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Abstract

Spatially-constrained clustering is a central concern in geographic data science. It finds applica-

tions in epidemiology, sociological neighborhood study, criminology, operations research, statistics,

and econometrics, to name a few. One novel method developed by Yuan et al. (2015) provides

a powerful new technique that ostensibly allows contiguity and attribute similarity to be balanced

parametrically. In this paper, I investigate a free parameter omitted in their discussion. I find this

free parameter has a significant impact on the solution structure; in addition to the single parameter

considered by Yuan et al. (2015), this parameter also affects the balance of contiguity and attribute

similarity in identified clusters. This is because what the technique uses are two separate kernels —

one for spatial similarity and one for attribute similarity. Both kernels affect solution quality. Exploit-

ing this realization, I create a generalization that leverages this behavior and apply it in two empirical

examples with data of differing spatial support. This generalization, called “spatially-encouraged

spectral clustering,” embeds the fact that spatial and attribute information can be combined in a

variety of ways, and parameters must be available for both sets of information in order to use them

effectively in the quintessential geographic data science problem of cluster detection.

1 Introduction

Spectral clustering is a thoroughly-used technique in machine learning to analyze the latent spatial

structure in data (Ng, Jordan, and Weiss 2002; Von Luxburg 2007). As a clustering technique, it

has often been applied to graph-embedded data (White and Smyth 2005), and recently been applied

to questions of geodemographic analysis of segregation and sorting (Chodrow 2017). The spectral
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analysis of geographic data is not a new concept in quantitative spatial science (Tobler 1966). Indeed,

the properties of the spectra of models and methods in spatial econometrics and statistics are well

known (Griffith 2000; Griffith 2013). While spectral methods often find their way into supervised learning

of geographic processes, the application of spectral analysis to unsupervised learning in geography is

less common.

This is because spectral clustering methods have not deeply integrated geographic information into

clusterings, like those required for spatially-constrained clustering (Duque, Ramos, and Surinach 2007).

The problem of identifying geographically-meaningful clusters is ubiquitous in the field, and has signifi-

cant common applications in epidemiology (Turnbull et al. 1990; Besag and Newell 1991; Kulldorff and

Nagarwalla 1995; Neill et al. 2005; Rogerson and Yamada 2009) and econometrics (Czamanski and

Ablas 1979; Rey and Mattheis 2000; Arbia, Espa, and Quah 2008). Further, the exploratory analysis

of spatial outliers and “hotspots” is a common technique in exploratory spatial data analysis (Anselin

1995; Getis and Ord 1996), and is a common mode of analysis for initial geographic interrogation. The

determination of spatially meaningful communities also plays a large role in spatial sociology (Galster

2001; Drukker et al. 2003; Spielman and Logan 2013), and the visualization of the spatiality inherent

in demographic data is a robust subfield of geography, known as geodemographics (Harris, Sleight,

and Webber 2005; Harris, Johnston, and Burgess 2007; Singleton and Longley 2009; Singleton and

Spielman 2014).

While each of these domains focuses on slightly different methods of identifying geographic ar-

eas with consistent semantic meaning (or visualizing the spatiality of semantically-meaningful areas in

data), measures of how “well-separated” clusters are from one another are common in the literature.

Recent methods, such as local information scoring (Chodrow 2017) follow in a long line of post-hoc

measures of attribute separation between identified clusters (Rousseeuw 1987). In this way, most

measures of attribute similarity or spatial contiguity are either the byproduct of cluster fitting or are

computed about solutions after their fit. But, by themselves, these scores provide no method to bal-

ance spatial separation and attribute homogeneity before the solution is generated. In contrast, the

spatially-constrained spectral clustering method of Yuan et al. (2015) parameterizes the balance be-

tween contiguity and cluster cohesion before computing clusters. Critically, the balance parameter can

be varied to generate different solutions with differing trade-offs between spatial separation and attribute

homogeneity. This means that, instead of simply characterizing the spatial and social separation in a
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clustering solution after the fact, it can be controlled from the outset.

Yuan et al. (2015) provide their method in the context of land use classification over remotely sensed

polygons. To provide an extension of this method for generalized spatial social science, I will review

the basic theory of spectral clustering, discuss Yuan et al. (2015)’s core improvement, and then discuss

two related representational choices that are required to generalize the method. First, I discuss the

impact of an omitted free parameter: the attribute kernel bandwidth, τ2. Whereas Yuan et al. (2015)

only consider a spatial discrete bandwidth parameter, δ, both δ and the omitted τ2 balance to control the

solution’s characteristics. This runs counter to the suggested interpretation obtained from the analogy

offered to aspatial constrained spectral clustering.

The examination of the free parameter and re-interpretation of δ do not invalidate Yuan et al. (2015)’s

conclusions, nor the novelty of their method. Rather, these realizations are required to generalize

the method, improving the method’s flexibility for a given data and adaptability for various types of

data. I call this generalization spatially-encouraged spectral clustering. I close by demonstrating this

generalization for two datasets with different spatial support and thus different conceptually-appropriate

spatial representations.

2 Fundamentals of Spectral Clustering

Spectral clustering works by finding clusters in a lower-dimensional embedding of high-dimensional

attribute data (Ng, Jordan, and Weiss 2002). Thus, at a high level, spectral clustering has a dimen-

sion reduction step where relevant eigenvectors are extracted from a summary matrix of the data, and

then a cluster discovery step, where clusters are detected from within the lower-dimensional embed-

ding. The data summary matrix, called the affinity matrix, encodes the pairwise similarities between

N observations over P covariates contained in the source data matrix X. The pairwise affinity scores

are a distance metric (usually standardized between [0, 1]) that relates how similar observation i is to

observation j; these are collected into A, the N × N affinity matrix. Typically, attribute similarity is a

kernel function, such as a negative exponential kernel, such that the resulting affinity matrix is pos-

itive semidefinite and symmetric. With an affinity matrix, spectral clustering operates on the implied
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Laplacian matrix of this data, which is defined as:

L = D − A (1)

where D is a diagonal matrix (the degree) matrix, such that Dii = ∑N
j Aij. Then, the set of K eigenvec-

tors corresponding to the largest K eigenvalues extracted from L provide a lower-dimensional embed-

ding over which a simpler method, such as K-means, can be used to cluster more efficiently in lower

dimension (Von Luxburg 2007).

What Yuan et al. (2015) note is that, given the structure of the implied Laplacian L, the structure of

A can be adjusted to provide a mixture of a contiguity constraint and attribute affinity. Indeed, as long

as A remains positive semidefinite and symmetric (and the corresponding D adapts to its structure),

A may be arbitrarily adjusted. They focus on the common concern of determining contiguous clusters,

with various algorithms designed explicitly for this purpose (Duque, Ramos, and Surinach 2007). To

develop a spatially-constrained spectral clustering algorithm, Yuan et al. (2015) adapts constrained

spectral clustering (Wang and Davidson 2010). The affinity matrix A is partitioned into two component

matrices, A f , the attribute affinity matrix and As, a spatial affinity matrix. For their problem, Yuan et

al. (2015) parameterize the spatial affinity matrix using, δ, which they suggest reflects the extent to

which spatial constraints are enforced. Thus, the form for Ls, the spatially-informed Laplacian used for

clustering, is similar to the standard aspatial spectral clustering Laplacian:

Ls = Ds − A f ◦ As(δ) (2)

where Ds is again constrained to be equivalent to the diagonalized row sums of A f ◦As, and ◦ denotes

the Hadamard (elementwise) product of the two N × N affinities. Again, by examining the top K eigen-

vectors of Ls with K-means clustering, a hybrid spatial-attribute regionalization can be constructed with

the balance between spatial contiguity and attribute fit governed by δ.

2.1 The model of constraint

While the approach in Yuan et al. (2015) is novel, there are a few remaining questions about δ. Explicitly,

due to the spatial nature of the problem, δ changes subtly in meaning from the typical constrained
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spectral clustering interpretation. In typical constrained spectral clustering, δ is a convex combination

weight used to merge the affinity matrix A and constraint matrix C together:

(1 − δ)A + δC (3)

where δ is constrained between 0 and 1. Thus, when δ approaches one, C becomes the sole considered

factor, and when δ approaches zero, A becomes dominant.

In contrast, Yuan et al. (2015)’s more complex specification provides a δ with different behavior. In

fact, their δ is a discrete bandwidth parameter, not a combination weight. They suggest a conventional

geographic interpretation of contiguity as neighbors along a first-order adjacency graph representation.

They call this a linear spatial kernel. Going further, they then state a generalization of this kernel that

they call the exponential spatial kernel. At a given finite order of contiguity, η, the authors provide the

exponential kernel as:

As(η) =
η

∑
k

A0
k

k!
(4)

where A0 is the first-order contiguity adjacency matrix. In fact, they note that this is a “truncated

exponential kernel,” since the series stops at η.1 This implies η in this problem is an integer-valued

parameter denoting a specific order of contiguity at which observations are considered neighbors. To

mimic the [0, 1] support from standard constrained spectral clustering, they let δ = η/ max{η}, where

max{η} is the diameter of the graph, and thus the order of the longest attainable path. Further, Yuan

et al. (2015) consider a binarized truncated exponential kernel, effectively a k-th order neighborhood,

where all nonzero elements of As(η) are set to 1, and is zero elsewhere.

3 Interrogating δ

This redefined δ parameter is different from the aspatial δ parameter. A superficial reason indicating

their difference is immediately apparent: δ is integral like η (albeit rescaled), and so is not continuous

like a standard convex combination weight from Expression 3. More critically, δ is not the sole gov-

erning factor controlling the mixture of attribute affinity and spatial constraint as it would be in typical

1This may be familiar to those who work with simultaneous autoregressive spatial econometric models, as it is the decay
of the matrix-exponential spatial autoregressive specification of (LeSage and Pace 2007) where the decay parameter is fixed
to 1.
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DRAFTFigure 1: Clusters in the graph spectrum of rook contiguity in Texan counties.

constrained spectral clustering. Changes in the attribute kernel, A f , may result in dramatically differ-

ent levels of contiguity in obtained solutions. Sensitivity to attribute bandwidth is a known concern in

spectral clustering (Von Luxburg 2007), and the introduction of a second spatial bandwidth potentially

makes their interaction even more volatile.

To resolve this, it may make more sense to understand δ only as a spatial bandwidth and not a

combination weight. Further, this puts it on par as an equal to the attribute kernel bandwidth, τ2. In

this understanding, many more spatial kernels are available, whose functional form or bandwidths may

differ. This attribute-spatial affinity partitioning can also be used more generally for more generic spatial

data supports. In this general form, the spatial bandwidth parameter should not be understood as a

contiguity relaxation parameter; this property is specific to Yuan et al. (2015)’s kernel and the specific

experimental design. In general, δ does solely control contiguity. Recognizing the full generality of

δ in the spatial kernel and its relationship to the attribute kernel provides a novel clustering method

in its own right, adaptable for various types of clustering problems where both the strength of spatial

cohesion (only sometimes viewed as contiguity) and attribute cohesion may be parameterized.

3.1 The Two Kernels

Yuan et al. (2015) suggest that δ, their spatial kernel parameter, behaves similarly to the constraint

mixture parameter in standard constrained spectral clustering. If this were the case, δ would be the

sole parameter governing the strength with which the contiguity constraint holds, as in Expression 3.

Under examination, though, the affinity kernel bandwidth also affects solution contiguity.
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To identify the free parameter, let us first consider the linear contiguity kernel suggested by Yuan

et al. (2015), the first-order adjacency matrix A0. Without any attribute data, we could obtain the la-

tent spatial clusters from the eigenspace of the connectivity graph for various K, as is shown for Texas

counties in Figure 1. We see that, by Rook contiguity, the discovered clusters are indeed contigu-

ous. Further, we observe that this contiguity kernel is also what occurs when η = 0 in the truncated

exponential kernel shown in Equation 4.

The attribute affinity matrix A f is also specified using a kernel. Yuan et al. (2015) follow a conven-

tional choice in both spatial analysis and machine learning with a Gaussian kernel. This models the

affinity between two observations, ρ(Xi, Xj), as:

ρ(Xi, Xj) = exp
{
−τ2||Xi − Xj||2

}
(5)

where ||.|| denotes the euclidean distance between the observations’ P-length covariate vectors.

While their simulation design focuses on the behavior of δ, Yuan et al. (2015) do not report the

value of τ2 used in the analysis. This is important, since τ2 is a free parameter, and can be adjusted to

provide different affinity structures, depending on the data, just like the spatial parameter. Their input

data is the principal components derived from many mean-centered and unit-deviation standardized

covariates. These principal components themselves may not necessarily have unit variances, so it

should not necessarily be the case that τ = 1 is an clear empirical choice. Indeed, τ is not intended to

stand in as the empirical variance of X generally, as X may be N × P with different variances for each

covariate, but τ2 is scalar and used for all P. Despite the fact that Yuan et al. (2015) do not discuss

the calibration of this free parameter, I will show that its calibration may significantly affect the spatial

structure of obtained solutions, even when δ is fixed. Further, depending on the nature of the attribute

affinity kernel, δ can have a dramatically different impact on contiguity.

For this, we need to introduce data. Let us consider a single covariate: change in the two-party

vote for president from 2012 to 2016 in Texan counties. This is mapped in Figure 2. In this case, there

are a few areas where groups of counties tended to swing together in the same direction. This means

their vote share intensified together towards one party, even if that party did not win the county. What is

clear from the map of swing in Texas counties is that urban areas tended to swing Democrat, meaning

the Democrats increased their vote share in urban counties (even if they didn’t constitute a majority
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DRAFTFigure 2: Change in two-party vote share in Texas, 2012 to 2016. On left is the raw distribution in a
histogram, on right is the corresponding spatial distribution over counties.

there), whereas Republicans tended to consolidate support in the more rural counties in western and

southern Texas which, in fact, they tended to win. This minor instantiation of partisan polarization in

the electorate is well-studied in political science and electoral geography, and does not come without

controversy itself.

We can visualize this for the real data on partisan swing. The distribution of affinities for the Gaus-

sian kernel at a given τ2 value is shown in Figure 3. The maps in that figure are produced for K = 9, but

K is illustrative here, and is independent of the affinities shown below each map; any K could be chosen

for a given τ2 value and a similar result visualized. Further, we should reinforce that no adjustment to

the spatial kernel has been made: in Yuan et al. (2015)’s terms, the linear spatial kernel (i.e. standard

adjacency matrix, A0) is used throughout.

The graphic starts with a value of τ2 that results in nearly all affinities tightly clustered around 1, and

then proceeds to values of τ2 that evenly distribute affinities along (0, 1) to a final value of τ2 where a

plurality of observations have zero attribute affinity. Considering that δ is fixed, change in the underlying

affinity distribution does change the identified clusters. Further, this change is larger for some clusters

than others. Since δ is fixed, this reflects the increasing use of attribute information. When τ2 = 1,

affinity scores are essentially all 1, and the cluster solution effectively ignores attribute information and

recovers the K = 9 solution from Figure 1 But, increasing τ2 while δ = 0 does not break contiguity: all

8



DRAFTFigure 3: Spectral clusters and affinities for the presidential swing in Texas counties. Moving right, τ2

increases. In all cases, the “linear spatial kernel,” is used, so δ = 0 always. The top row reflects the
ultimate solution to the clustering problem for K = 9 clusters, and the bottom row reflects the cumulative
distribution of attribute affinities contained in A f for the specified τ2.

identified clusters are internally connected.

3.2 The underlying model of clustering

Given that the clustering solution is often sensitive to τ2, two things seem reasonable. First, it is

plausible that some solutions at a fixed δ could be more relaxed than others by changing τ2 alone.

Second, it is plausible that, for two different τ2 values (τ2
a , τ2

b ), marginal changes in δ when τ2 = τ2
a

may be more impactful than when τ2 = τ2
b . To investigate this, a solution grid is shown in Figure 4 over

values of τ2 and δ. I focus on the binarized contiguity kernel here; each row uses the Aη connectivity

matrix, connecting observations with maximum path order η, since the exponential kernel behaves

substantively similarly in this case.

Both reasonable implications occur in this example. For some levels of η > 0, clusters become

spatially disconnected as τ2 increases but η is fixed. Reading across the rows, increases in τ2 for

fixed η tends to result in decreased contiguity at any order of η ≥ 1. But, declining contiguity is more

pronounced when η is large than when it is small. Reading down the columns, increases in η for a fixed

τ2 have nearly no impact on solution contiguity when τ2 = 1 and all attribute affinities are nearly 1.

Thus, neither τ2 nor η (alternatively, δ) is exclusively in control of the balance between contiguity and
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Figure 4: Clusters of counties identified in the presidential swing data, varying δ and τ2.
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attribute cohesion: they must be balanced against one another depending on the data itself.

So, why do Yuan et al. (2015) observe that, as δ increases, contiguity constraints become less

important in the problem? To build intuition, note that spectral clustering solutions are an approximate

solution to population-balanced minimum cut problems (Von Luxburg 2007). Thus, the use of flatter

affinity distributions (larger τ2) means that the cost of a constraint being violated is more heterogeneous,

and depends more strongly on attribute affinity. In contrast, when attribute affinity scores are nearly

the same, the cost of violating the spatial constraints is nearly constant and independent of attribute

information.

For example, assume that the analyst sets τ2 = 1, the default in some popular data science com-

putational software packages, such as scikit-learn (Pedregosa et al. 2011). For the data considered

here, this results in an affinity matrix which is primarily dense, and mostly values near 1. The product

of the nearly-uniformly 1 matrix and the sparse first-order spatial contiguity matrix essentially recovers

the contiguity matrix itself:

lim
A f →1

A0 ◦ A f = A0 (6)

Thus, if the affinity kernel is too narrow, the spectral clustering solution will essentially ignore attribute

data as seen above. As we increase the spatial bandwidth, η, As becomes significantly more dense.

This means more and more of the attribute affinity matrix, A f , is recovered. When δ goes to one

(or η goes to the graph diameter), contiguity constraints are “relaxed,” but this relaxation may not be

relevant to the actual obtained solutions if the attribute kernel does not enforce meaningful differences

in observation affinity. Only when τ2 begins to embody meaningfully-distinct variation over the attributes

does the change in δ become relevant for the contiguity of clusters. Thus, both the form and the width

of attribute and spatial kernels are necessary to fully-specify a spatially-constrained spectral clustering.

Since both are relevant, both bandwidth parameters must be considered.

4 Generalizing the problem

Considering both kernels together, Yuan et al. (2015)’s work can be extended to much more general

spatial clustering problems over multivariate spatial data. Indeed, for a given spatial structure matrix

As, the degree to which space influences the eventual clustering is governed by the distribution of
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values within the resulting matrix product, A f ◦ As. Therefore, let As now reflect any symmetric spatial

structure matrix with nonnegative eigenvalues. Let the free parameters used in defining the spatial

affinity matrix be η. Further, let the attribute kernel function, ρ(Xi, Xj), take an arbitrary vector of

free parameters, θ. Together, the same structure can be used to enable spatially-encouraged spectral

clustering:

L = D − A f (θ) ◦ As(η) (7)

where D is again defined as the appropriate degree matrix. Computing a lower-dimensional clus-

tering (like K-means) on the top-K eigenvectors of L provides an analogous solution to that in Yuan

et al. (2015). Further, the relative importance of attributes versus contiguity is governed directly by

the normal parameterization of A f (θ) in the attribute affinity matrix and As(η) in the spatial affinity

matrix. With this, it becomes clear that Yuan et al. (2015)’s discrete contiguity kernel is one possible

specification of As(η) applicable for clustering on spatial lattice data.

In this generalization, θ and η are stated explicitly to show that they both matter for the eventual

clustering solution. As in the previous demonstration, if ρ(Xi, Xj) ≈ c ∀ i, j for a constant c, geography

dominates, and the obtained solutions are no different from those obtained when no data is used at

all.2 As A f (θ) widens in distribution, the clustering solutions become more distinct from the spatial-only

clustering. If η changes (or the functional form of As(η) changes), then the spatiality of the problem will

change as well.

4.1 Understanding the Parameter Tradeoffs

The practical concern for choosing θ and η, then, is the structure of the affinity distribution; if the gap

between the minimum affinity and zero is large, contiguity will hold more strongly than if the gap is

small, as seen in Figure 3. Both free parameters are required, however, and both simultaneously

determine the resulting structure of the solution. An example of this optimization space is shown in

Figure 5 for the Texas counties example. There, four maps at varying τ2 values are shown. Underneath,

three scores are shown. First, the variance ratio (Calinski-Harabasz pseudo-F (Calinski and Harabasz

1974)) score is shown, which relates the within-cluster sums of squares to the between cluster sums

of squares. Second, the silhouette score is shown (Rousseeuw 1987), which relates the distances

2If As encodes nonlocal geographic relationships, the resulting spectral clusters will be defined with respect to that notion
of geographic structure.
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between observations, their source clusters, and their next-best fit clusters. In both cases, larger values

are interpreted as showing clusters are more distinct or coherent, indicating that the variability within

clusters is smaller than the variability between clusters. Third, the fraction of observations that are on

the boundary of a cluster, the ones that touch an observation with a different label than their own, are

plotted. This indicates the extent to which the map is spatially fragmented. Finally, the median attribtue

affinity score is plotted on bottom.

As τ2 increases from zero (where all observations have an attribute-affinity of 1) to being large

relative to the distance metric used in the kernel (here, around 1000), clusters occasionally become

more spatially fragmented according to their boundary fractions, but have larger variance ratio scores

on average. In general, the change in the boundary fraction is not uniform over τ2, however. Fur-

ther, most statistics appear to be largely driven by step changes; at a critical τ2 value, the clustering

solution changes radically. The silhouette and boundary fractions, on the other hand, do not change

monotonically. In fact, they are unstable over some ranges of τ2, rapidly changing between two similar

values.

In addition, the relationship between attribute coherence and spatial fragmentation is not linear.

For some of the increasingly-coherent clustering solutions, the boundary fraction is smaller, such as

around the step change near τ2 = 1300. Thus, small changes in τ2 may result in significant changes in

solution, and the tradeoff between attribute homogeneity and spatial regularity is neither linear nor even

zero-sum: the step near τ2 = 1500 results in less spatial fragmentation and more attribute coherence,

but the step change around τ2 = 800 has has effectively no impact on spatial regularity while improving

the variance fraction.

If one were to use this strategy in a formal optimization routine for a combined spatial-attribute

objective, solving the clustering optimally would be difficult due to the volatility in any chosen cluster

scoring function. Thus, any use of this heuristic should explore τ2 values in the neighborhood of the

solution to determine the stability of the resulting solution. Since the value of τ2 is data-dependent,

it appears sufficient to start a search with τ2 that place mass over the whole [0, 1] range. Thus, a

computationally-cheap exploratory method to examine the balance between contiguity and attribute

affinity is to pick τ2 that provides a reasonably low median affinity, after filtering by As. Determining this

initial tuning requires no evaluations of the actual eigenvectors of the affinity matrix since no clustering

is computed to initialize. In fact, it can be simplified to only compute A f for neighbors in a sparse As(η).
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Figure 5: Clusters in electoral swing in Texas Counties as a function of τ2, the Gaussian kernel param-
eter.
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4.2 Induced geographic regularity for clustering on non-lattice data

Provided with this generalization over arbitrary attribute and spatial kernels, any spatial kernel function

can be used. A more arbitrary form for the spatial kernel provides an arbitrary method to mix spa-

tial proximity and attribute affinity together in a single clustering problem. Thus, I move to find price

clusters in the prices of Airbnb listings in Brooklyn. These are point-referenced data, so the contiguity

forms considered by Yuan et al. (2015) cannot be used. Airbnb, a popular on-demand accommodation

service, offers an alternative to typical hotel accommodation. Notably, its spatial market penetration is

much more widespread in Brooklyn than the equivalent presence of hostels and hotels. Thus, given

enough listings, clusters in those listings’ prices may identify spatially-meaningful communities where

prices are similar. This is in contrast to other types of density-interpolating cluster searches useful for

spatial data (like HDBScan (McInnes, Healy, and Astels 2017)) which simply identify clusters of spatial

colocation and other more traditional attribute clustering methods that do not consider space.

Airbnb listings often contain a wealth of information about the potential accommodation, including

various amenities made available to the renter and how often the property attracts reviews. Rental

data exists as point-referenced data, with each listing having one (and only one) spatial coordinate.

Here, only the price information for Airbnbs in Brooklyn scraped on October 21st, 2017 will be used.

Some listings overlap, since rentals can cover single rooms or apartments within the same building. No

listings are duplicated, meaning that previous price information of the same listing is excluded from the

analysis. Thus, this constitutes a single, cross-sectional analysis of recent Airbnb pricing structures in

the fall of 2017 in Brooklyn, NY. An example of the spatial pattern of the listings, reflecting their relative

density, position, and price, is shown in Figure 6.

Identifying price clusters require that we balance price homogeneity and spatial coherence, since

price clusters should ostensibly present a contiguous “conceptual area” where listers price their prop-

erties to compete with one another. By examining the spatial clumping of price information, we aim to

identify competition communities, where individuals tend to price their Airbnbs to compete with other,

spatially-proximate Airbnbs. Practically speaking, this means we must balance spatial coherence and

attribute homogeneity, so spatial-spectral clustering is required. However, the contiguity kernel is not

applicable here, since contiguity is not defined for point-referenced data.
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DRAFTFigure 6: Prices of Airbnb rentals in Brooklyn, NY. Presence/absence is shown on the left, and their
prices are shown on the right

Instead, I suggest using an adaptive Gaussian weighting for this:

As(δi)i,j = exp
{
−δ2

i ||si − sj||
}

(8)

where si is the spatial position of site i, and ||si − sj|| is the spatial distance between two sites. As

shown in Figure 6, the spatial density of Airbnb listings decreases dramatically as one leaves the north-

central Brooklyn core. Thus, using a fixed bandwidth over the entire map would not properly represent

areas where listings are more spatially diffuse. An adaptive Gaussian kernel accounts for this, letting

the bandwidth for each site i be determined as a function of the distance from that point and its furthest

neighbor, for the p-nearest points to i. Thus, in the analysis below, I’ll examine the clustering solutions

as a function of the size of this nearest neighbor set.

Because the adaptive kernel weight is not symmetric, it cannot be used alone to generate the

combined spatial-attribute affinity matrix. To enforce symmetry, the average of the adaptive kernel and

its transpose can be used:

As =
As(δi) + As(δi)

T

2
(9)

This means that the weight assigned for any dyad of points is an average of their directed weights. This

still adapts the bandwidth for sparser areas, but ensures symmetry in the kernel required for spectral

analysis. Further, this admits a similar type of binarized analogue: the symmetrized K-nearest neighbor

16



DRAFT

weights calibrated with δ neighbors. In this case, observations are connected when at most one is a

member of the other’s δ-nearest neighbor clique. Practically speaking, I use δ such that the resulting

spatial graph is connected in either adaptive Gaussian or binary KNN graphs to prevent clusters that

are only due to spatial sparsity from resulting in the clustering analysis.

Cluster solutions varying the attribute kernel parameter and number of nearest neighbors used to

construct the spatial kernel are shown in Figure 7 for the binary symmetric KNN kernel, and in Figure 8

for the adaptive Gaussian kernel. The nearest neighbors used to construct the spatial kernel changes

over columns, and the attribute bandwidth changes over rows. Moving down within a column, the at-

tribute kernel becomes sparser, meaning affinities shift from being clustered tightly around 1 to being

spread over [0, 1]. Moving right over rows, the spatial bandwidth increases, meaning more distant ob-

servations are considered connected. In this case, increasing δ actually is associated with more regular

spatial clusters, for either spatial kernel type. This is the reverse of the contiguity kernel case, where

increasing the width of the spatial kernel causes nonlocal clustering solutions to be selected. Increasing

the sparsity of the attribute kernel while holding the spatial kernel constant results in the identification of

smaller clusters (when the spatial kernel is very small), and significantly affects the cluster assignments

when the spatial kernel is large. Further, incredibly wide attribute kernels (when used alongside incred-

ibly narrow spatial kernels) result in extreme imbalances in cluster size, so that some clusters when

τ2 = 10 and η = 6 are effectively composed of a listings within a single building. While the separating

lines are not necessarily convex (nor, indeed, even straight boundaries at a reasonable resolution), the

boundaries between clusters are, to a large degree, abrupt. No boundaries are detected where stip-

pling of different label assignment occurs, so these clusters constitute intelligible price clusters in their

own right.

We can also see the impact of this varying of the spatial and attribute tuning parameters in this

problem. By examining the surface of cluster quality scores, we can see how the change in spatial

and attribute parameters trades off in solution quality. I show the surfaces of two common statistics,

the map average silhouette score (Rousseeuw 1987) and a variance ratio “pseudo-F” statistic from

(Calinski and Harabasz 1974). The silhouette provides a measure of the average separation between

clusters in terms of the distance to the centers of other clusters. It varies between −1 and 1, with zero

indicating that observations are about as far apart from their own observations as they are from their

next best fit cluster on average. The pseudo-F relates the variability between clusters to the variability
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Figure 9: The surfaces of the map average silhouette score, varying the spatial and attribute kernel
width. On left is the results from the adaptive Gaussian kernel As. On right, the results when using
symmetric KNN for As. In the middle is the difference between the two curves, Gaussian kernel surface
minus the KNN surface.

within clusters, with larger values indicating that variability in cluster means is larger than variability

within clusters alone. Thus, in both cases, larger values indicate greater cluster separation.

In Figure 9, the relationship between the silhouette score, spatial, and attribute kernel width are

plotted. On left is the kernel surface, on the right is the KNN surface, and in the middle is the difference,

kernel minus the KNN surface. The attribute kernel parameter, τ2, is measured at 20 control points

distributed logarithmically between 0 and 10.3 The spatial parameter, in this case the δ-neighbors

chosen to construct the adaptive kernel (or binary adaptive kernel) are shown on another axis, and

have been distributed linearly over [6, 500], where 6 is the smallest required number of neighbors to

keep the graph connected. What is apparent in this comparison is that the map average solution

surface for this objective is relatively insensitive to the attribute kernel, but cluster homogeneity tends to

improve as the spatial bandwidth increases. When the two surfaces are viewed end-on-end (collapsing

the K and τ2 dimensions), the two surfaces are not exactly coplanar, but are quite close. In general,

the Gaussian adaptive kernel has slightly map average silhouette scores, indicating it provides clusters

with slightly better separation. Regardless, since the attribute kernel behaves differently here from the

previous section, this strongly reinforces the fact that the sensitivity of this spatial-sectral clustering

to the attribute kernel parameterization may vary from dataset to dataset, and from spatial support to

spatial support.

Further, the relationship between spatial and attribute kernels may also vary from objective to objec-

tive. Figure 10 is a plot of the surfaces for the pseudo-F statistic over varying spatial and attribute kernel

widths. Here again, the left plot shows the surface of the pseudo-F with the Gaussian kernel, varying

3Plotting τ2 on a log-scale would then result in these surface plots having a regular grid. They remain plotted on the linear
scale for τ2 to keep the intuition in terms of raw parameter values.
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Figure 10: The surfaces of the Calinski-Harabasz pseudo-F, varying the spatial and attribute kernel
width. On left is the results from the adaptive Gaussian kernel As. On right, the results when using
symmetric KNN for As. In the middle is the difference between the two curves, KNN surface minus the
Gaussian kernel surface. This is the reverse difference from Figure 9 for legibility reasons.

the spatial and attribute kernel widths, and the right plot shows the KNN binary kernel. However, here,

the difference term has been flipped for orientation visibility, with the FK standing for the F statistic for

the KNN binary kernel and FL for the Gaussian kernel. In this case, the plot demonstrates that, when

the attribute kernel is narrow, widening the spatial kernel by increasing the number of neighbors tends

to increase cluster homogeneity much more rapidly than when the attribute kernel is wide. Further, the

KNN model in this case tends to have uniformly better variance ratios, and the difference between the

two surfaces is much less noisy than that in the silhouette curve. Regardless, as shown by these two

surfaces, the impact of changing the spatial kernel width on a given score is not consistent between

scores, nor is it consistent for different attribute kernel widths. So, attention must be paid to both; one

cannot ignore the specification of one kernel while changing the other.

5 Discussion & Conclusion

In total, spectral clustering methods hold significant promise for spatially-constrained regionalization

and exploratory spatial cluster analysis. Already recognized as a computationally hard problem (Duque,

Ramos, and Surinach 2007), spectral methods reduce the implementation difficulty in discovering ap-

proximately (or exactly) contiguous clusters. However, these methods are not cost-free, since the de-

termination of eigenvectors for large sparse matrices is compute-intensive and sometimes inaccurate.

Thus, efficient and accurate eigenvector computation methods constrain the broader applicability of

this technique. But, this method can exploit the same computational improvements made generally

for machine learning implementations of spectral methods, as this technique reduces fundamentally to
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spectralbibtex clustering on well-designed spatial representations of the data.

This method can be used for exploratory data regionalization, as well as data-dependent regional-

ization. The choice of the functional form for As and A f is arbitrary, as is the choice of values for their

relevant free parameters. Ideally, these should be data-appropriate and theory-driven, reflecting the

unique structure of data and the desired outcomes of analysis (e.g. Chodrow 2017). An optimal fit rou-

tine could be used, where θ is chosen to maximize a convex combination of generalized contiguity (Wu

and Murray 2008) and within-class homogeneity. If this were done, the resulting convex combination

parameter would serve as a direct analogue to δ in traditional constrained spectral clustering. However,

the volatility in three types of clustering score functions considered suggest that this objective may be

exceptionally-poorly behaved. Alternatively, kernels may be set to search for solutions within a param-

eter grid in an exploratory analysis, allowing clusters to become more or less diffuse over space or

homogeneous in attributes. This method was demonstrated and its impact on common cluster scoring

metrics shown to be non-linear for some scores and some combinations of spatial kernels and attribute

kernel widths.

The definition of spatial kernels in spatially-encouraged spectral clustering can be adapted to model

the spatial relationships of any type of data support, and attribute kernels should reflect the attribute

distances relevant for the data at hand. The spatial affinity structure might be highly local first-order

contiguity, it may reflect neighborliness within a given distance cutoff, or it might itself be a continuous

Matérn covariance function or spatial kernel. The attribute affinity structure may be a straightforward

attribute kernel (e.g. Gaussian, bisquare, or triangular kernels) or may reflect various compositional

affinities using more complicated divergence measures (Chodrow 2017). Regardless, when combined,

typical spectral clustering methods can be applied to and clusters of varying spatial cohesion may be

obtained.

This paper identifies an opportunity to extend and expand (Yuan et al. 2015) and takes it. By

examining an omitted parameter in their discussion, I suggest a technique for spatially-encouraged

spectral clustering that is significantly more general. Further, this more general method offers the end

user more control over the structure of the solution, since both spatial and attribute kernels are able

to be tuned. While the surfacing of more tuning parameters introduces significantly more complexity

into the analysis, it also ensures that the resulting solutions can be fine-tuned and made precisely

applicable for the data at hand. Further, ignoring free parameters may result in unexpected behavior,
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such as changes in the structure of a spatial kernel having different impacts depending on the structure

of the attribute kernel. Thus, the technique developed here makes it explicit that both spatial and

attribute kernel parameterizations are important, and being aware of their impact can help to tune

cluster solution. In sum, this paper’s refinement of Yuan et al. (2015) provides a novel, more generally-

applicable technique for cluster analysis in geographic data science that can be used to model how

space and attribute compete for relevance in the determination of spatial clusters.
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