## JULY 22, 2021

# A Review of the 2023 Boundary Commission for England Draft Plan

QUANTITATIVE SPATIAL SCIENCES LAB SCHOOL OF GEOGRAPHICAL SCIENCES UNIVERSITY OF BRISTOL

## Table of Contents

**Executive Summary** 

#### Introduction

### Populations, Places, and Communities

Northern constituencies (and London) are extensively re-drawn Constituency shapes change in very uneven ways across regions Accessibility changes are largely balanced within regions Accessibility improves in Birmingham and Newcastle Elsewhere, accessibility worsens in clear and distinctive ways

## Designations and Density

Raw density reported by the BCE is inconsistent for designations Lived density, a better measure, still shows inconsistencies Draft (Re)Designations may reduce competitiveness Draft (Re)Designations may inflate minor party campaign spend

## Conclusion

#### Contributors

Alistair Anderson Joseph Day Sean Fox David Manley Isabelle Bi Nicholas Dorward Lenka Hašová Emmanouil Tranos Levi John Wolf<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Corresponding Author: <u>levi.john.wolf@bristol.ac.uk</u>

#### **Executive Summary**

We commend the BCE for the work it has done to date to address current imbalances and population changes in England since the last review. However, there are a few districting decisions in the draft constituency map that deserve more thorough consideration or more detailed justification. Specifically, we find:

- Significant **reductions in the** *accessibility* **of some constituencies** in Liverpool, Leeds, Manchester, and Bristol are not balanced with improvements nearby, which would justify these changes
- Extensive **'fracturing' of communities across proposed new boundaries**, which further reduces *accessibility* and is particularly apparent in cities such as Leicester, Leeds, Manchester and London
- **Significant regional disparities** in boundary changes, with a concentration of extensive changes in the North of England and London, which will disproportionately impact voters living in these areas.
- **Systematic generational disadvantage in voting power** at the national level, with reduced representation among younger voters who are concentrated in urban areas that proposed changes tend to "pack" together.
- **Inconsistent constituency designations** that do not align well with statutory criteria of urban/ruralness, nor alternative measures that may be more appropriate
- **Constituency designation** *changes* **that are not clearly justified** and which may reduce competitiveness in marginal districts, increase the expense of campaigning for minor parties, and increase competitiveness in non-marginal ones.

Overall, many of the proposed changes are unusual and require more thorough consideration or much better justification in relation to the BCE's stated criteria. We therefore strongly urge the Commission to revisit the proposed changes, with particular attention to the following:

- **Hartlepool** is re-designated as a County constituency despite having nearly twice the population density as a few Borough constituencies (e.g. Bristol North West) and no boundary change. This increases campaign spending limits in

Hartlepool, which generally decreases competitiveness and limits the effectiveness of minor party competition.

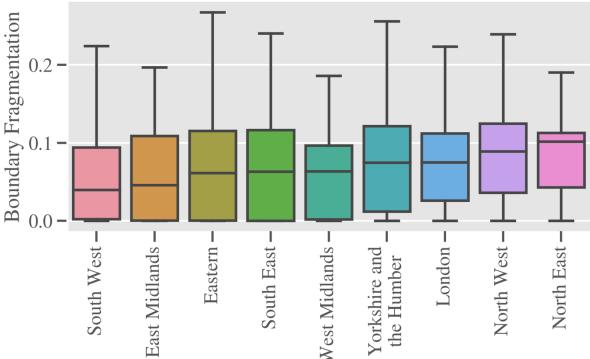
- The split of **Batley and Spen** into **Dewsbury** and **Batley and Hipperholme**, both of which become significantly less accessible in terms of the connectivity between voters. Further, Batley and Hipperholme is created as a Borough while Dewsbury is re-designated as a Borough from a County constituency. This reduces campaign spending limits, which generally increases competitiveness and increases third-party competition for major parties' votes.
- **Liverpool Riverside**, which seriously decreases in accessibility as it moves inland to pick up disconnected voters in the northeast while jettisoning prosperous communities south of the Dingle that are better connected to Liverpool Riverside.
- **Bristol South & Bristol East**, and **Bristol North East**, which have much worse constituency's accessibility due to shifting boundaries that "pack" more deprived communities into Bristol East/North East.
- Extensive changes around suburban Leicester (such as Blaby, Oadby, and Wigston) where entirely re-drawn constituencies have worse accessibility as disparate suburban areas are re-grouped together.
- Similar changes to North London constituencies (**High Barnett and Mill Hill**, **Hornsey and Wood Green**, **Hendon and Golders Green**) that reduce accessibility for the electorate and seriously fragment existing constituencies.

We acknowledge that the potential for change may be limited by the cascading effect that this has on other constituencies. Fortunately, constituency *designations* can be changed without cascading effects, and we encourage the commission to review designations further in order to develop a clear and consistent rule for designation on what a "small rural element" is. Finally, all of the data and analysis from our lab is presented online, in a responsive map, for commissioners and the public to review at <u>https://ljwolf.org/bce</u>

### Introduction

In the review consultation documentation, the Boundary Commission for England (BCE) outlines a few key points of information driving the design of Westminster Parliamentary Constituencies in the 2023 boundary review. These standards reflect the ground rules for the Commission. Notably, point 26 discusses the main criteria underlying the design of the boundary map:

- 26 Rule 5 in Schedule 2 provides for a number of other factors that the BCE may take into account in establishing a new map of constituencies for the 2023 review, specifically:
  - Special geographical considerations, including in particular the size, shape, and accessibility of the constituency
  - Local government boundaries as they existed (or were in prospect) on
    1 December 2020
  - Boundaries of existing constituencies
  - Any local ties that would be broken by changes in constituencies
  - The inconveniences attendant on such changes


Initially, these criteria appear to provide useful grounds on which to judge the quality of the BCE's 2023 plan. Unfortunately, key terms, such as *size*, *shape*, *accessibility*, *local ties*, or *inconveniences* are left undefined for the public. It is therefore difficult to determine how these quantities ought to be measured. Further, clear decision rules regarding trade-offs are not provided. For example, the extent to which "boundaries of existing constituencies" ought to be preserved at the expense of the "accessibility" of a constituency is unspecified.

However, we recognise that it may not be possible to provide specific definitions of these concepts and their relative weights for decision makers, and we welcome the human element in the determination of districting decisions. Algorithmic districting, while possible, is usually not desirable as it reduces the important roles that political negotiation, inconsistency, and flexibility play in the process of drawing constituencies that resonate with the lived experiences of English communities and voters. However, we do think that specificity is critical for *justifying* specific boundarydrawing decisions. In the absence of clear definitions of these key statutory criteria, we examine the potential impact of proposed boundary changes in relation to a range of definitions in order to provide a balanced and empirically grounded analysis.

#### Population, Places, and Communities

In this section, we explore the criteria of *shape*, *accessibility*, *existing constituency boundaries* and *local ties* as critical elements in the restriction process to examine how effectively these goals are met within the draft plan. Without detailed knowledge about what the BCE considers important and why, decisions about specific constituency boundaries reflect an unknown mixture of the statutory criteria outlined above. No algorithmic process would be suitable in this instance, as it is often the case that "apolitical" criteria still have serious partisan implications (Altman 1998b).

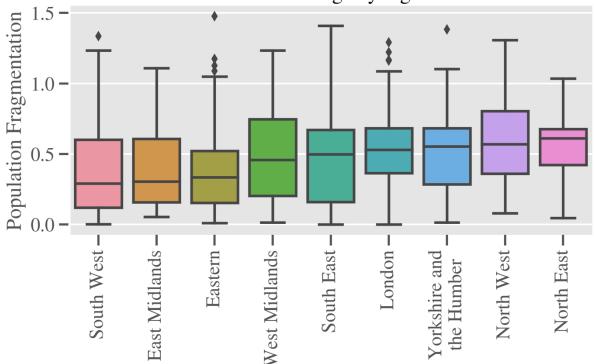




District change by region

Figure 1: Boundary fragmentation in constituency boundaries by region.

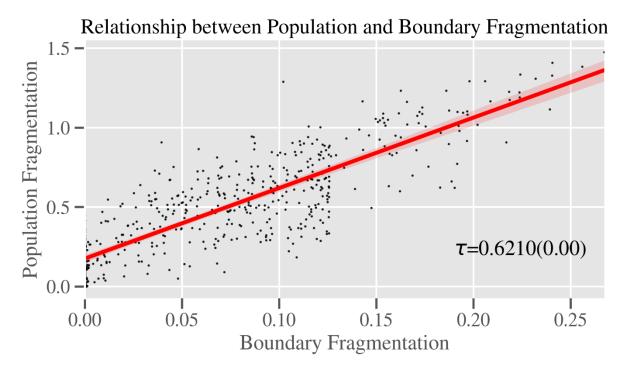
While BCE notes that "boundaries of existing districts" are an important statutory principle of constituency design, some constituencies are preserved better than others, and some areas of the country experience much more extensive change than others. This is important, since the breakup of a longstanding constituency, while possibly necessary to improve the "fit" of boundaries to the underlying population, has the potential to make constituencies more competitive and increase turnout (Pattie et al., 2012), as well as reduce incumbent advantage. Since increasing marginality and reducing incumbent advantage have partisan consequences, it is important to examine the extent of the proposed boundary changes across the major regions of England.


To do this, we can estimate how well a new constituency in the 2023 draft plan matches an existing constituency. The plot in Figure 1 shows this with a geographical measure of *fragmentation*, <sup>2</sup> where scores close to zero indicate that constituencies are nearly the same as a current constituency, while larger scores indicate that the proposed constituency boundaries are increasingly less aligned with current constituency boundaries. This is also visualised in the online map accompanying this report using the "Boundary Fragmentation" layer. The distributions below show that some regions, such as the South West and East Midlands, have constituencies that largely follow the same boundaries as before. Their median fragmentation scores are well below .05, and 75% of the constituencies in the South West are below .1.

In contrast, the North East and North West regions see dramatic change to constituency boundaries, with the *median* constituency score for the North East being greater than the 75<sup>th</sup> percentile of the South West constituencies. This means that the proposed constituencies in the North East/West are poorly aligned with existing constituencies, whereas the South West, having set records for population growth, exhibits the most cohesive mappings between existing and proposed constituencies. This is counterintuitive, as we would expect to see the greatest boundary instability in regions with large population changes, regardless of growth or decline.

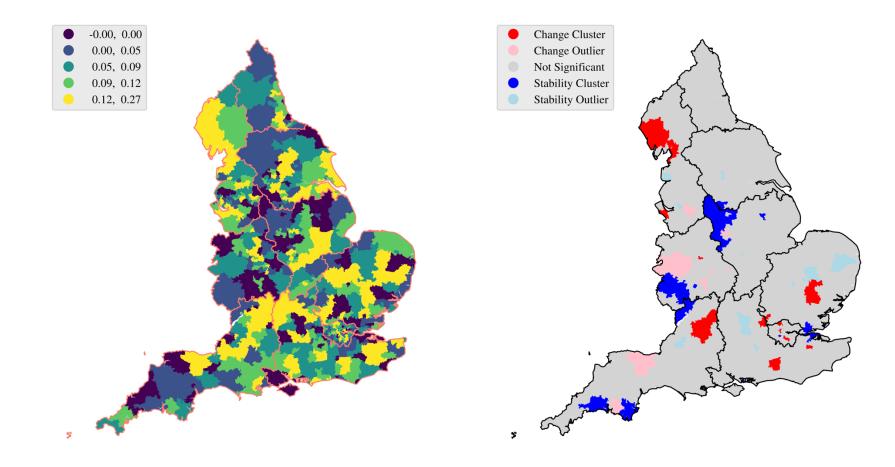
<sup>&</sup>lt;sup>2</sup> Details of this measure are provided in a methodological appendix.

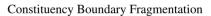
Of particular note, longstanding constituencies in the North such as Batley and Spen, are set to experience radical boundary changes that could result in higher turnout, weaker incumbent advantage, and tighter electoral margins.


One objection to the measure of boundary fragmentation used above is that it focuses on the *area* of reassignment, rather than the *populations* that get reassigned. While we will examine the properties of the populations that get re-assigned later in this report, two observations are worthy of note here. First, as detailed in Figure 2, a populationbased measure of fragmentation between existing and proposed boundaries yields a very similar pattern. Our population fragmentation measure is large when the population of a new district are coming from many current constituencies, and is zero when the population of a district comes from exactly one previous district. Again, the units of this measure are arbitrary, but can be compared on a relative scale. Our results are consistent: people in the North and London see dramatic changes in their reassignments, whereas the refinements to constituencies in the South West largely keep populations that were in the same constituencies together. This is also visualised in the "Population Fragmentation" layer of <u>the online map</u>.



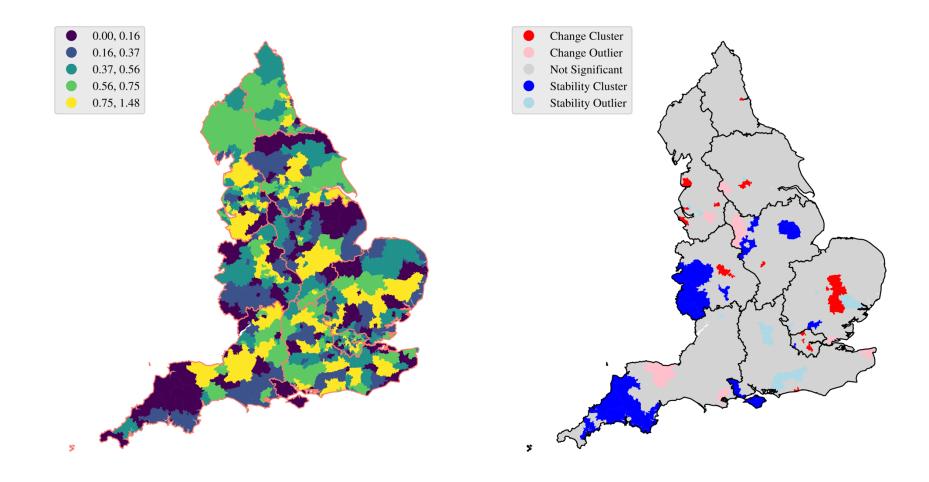
District change by region


**Figure 2:** Fragmentation in constituency populations by region using the same approach as that taken in Figure 1.


Second, and more importantly, the correlation between the two measures of fragmentation is high, as shown in Figure 3. In theory, these measures correspond *better* when the areas being reassigned are evenly populated, as occurs in dense regions. These measures will *diverge* when the areas that are reassigned are extremely uneven in their population distributions, which is generally the case when small towns and their nearby rural areas are reassigned. This suggests that changes to district areas do indeed focus specifically on re-assigning target *populations*, particularly in cities and city-peripheries, rather than re-shaping rural, sparsely populated areas. This is highly significant and addressed further below in relation to the criterion of accessibility.



**Figure 3:** Relationship between the two fragmentation scores is strong, and their correlation is very high. This suggests that area and population are very similar for these measures of fragmentation, suggesting most salient redistricting decisions affect areas of fairly uniform population, such as those reassigning communities within cities and towns, rather than those reassigning small rural communities between constituencies.


Looking more closely at the geographical pattern of constituency boundary changes shown in Figure 2, we see that there are clusters of constituency boundary changes that stand out from the general pattern of the region in which they are located. For instance, there is a large cluster of boundary instability in the far North West, as well as areas of significant stability around Herefordshire. Interestingly, the population fragmentation clusters clearly pick up the fact that districts in the South West conform well to pre-existing boundaries, even where there are new districts created. In both analysis, as well, there are clear fragmentation outliers in Manchester, suggesting that the areas of central Manchester change seriously relative to their surroundings. This is a generally different pattern than the regional one is not easy to pick out. The map of fragmentation is <u>also presented online in the "Boundary Fragmentation" and "Population Fragmentation" layers.</u>





Clusters in Fragmentation

**Figure 4:** Maps of constituency fragmentation and statistical clustering detected in constituency fragmentation. Change clustering indicate places where the electoral map has changed substantially more in that constituency and its immediate surroundings than is typical in the map. Therefore, this measures the *local change* in boundaries around each constituency, rather than a regional analysis. <u>View online</u> with the "Boundary Fragmentation" layer.



**Constituency Population Fragmentation** 

Clusters in Fragmentation

**Figure 5:** Maps of constituency population and statistical clustering detected in this fragmentation. Change clustering indicate places where the electoral map has changed substantially more in that constituency and its immediate surroundings than is typical in the map. Therefore, this measures the *local change* in boundaries around each constituency, rather than a regional analysis. <u>View online</u> with the "Population Fragmentation" layer.

|                     | Smoothness | Smoothness | Compactness | Compactness |
|---------------------|------------|------------|-------------|-------------|
|                     | (draft)    | (current)  | (draft)     | (current)   |
| East Midlands       | 0.0302     | -0.0301    | 0.07        | -0.0119     |
| Eastern             | -0.476     | -0.5038    | 0.2119      | 0.3325      |
| London              | 0.6105     | 0.7418     | -0.233      | -0.2071     |
| North East          | -0.4266    | 0.0157     | 0.3022      | 0.0476      |
| North West          | 0.3253     | 0.2792     | 0.2982      | 0.2598      |
| South East          | -0.0015    | -0.1931    | 0.0569      | -0.088      |
| South West          | -0.5755    | -0.4041    | 0.2567      | 0.2464      |
| West Midlands       | 0.3308     | 0.4437     | -0.0097     | 0.2055      |
| Yorks. & the Humber | -0.1194    | -0.2497    | -0.1048     | -0.1987     |

*Constituency shapes change in very uneven ways across regions* 

Table 1: Change in the median boundary smoothness and shape compactness for constituencies in regions. Regions with constituencies that become less smooth/compact are coloured red.

The BCE notes that the statue focuses on constituency shape as a key trait for drawing good constituencies. This is a common redistricting principle in many representative democracies with first-past-the-post electoral systems. Therefore, we measure the shape properties of constituencies through two composite measures: smoothness, which measures how indented or "wiggly" the constituency boundary is, and *compactness*, which measures how elongated or spindly the constituency shape itself is.<sup>3</sup> In this composite measure, negative scores indicate rougher or elongated shapes, and positive scores indicate smoother or more compact shapes. By design, *smoothness* is independent from *compactness*. Together, these provide a reasonable measurement of how well-shaped a constituency is (Altman, 1998a). These can be viewed in the online map using the "Smoothness (% Change)" and "Compactness (% Change)" layers.4

<sup>&</sup>lt;sup>3</sup> Details of the methodology and references are provided in the methodological appendix. <sup>4</sup> Since districts cannot always be linked directly, this records the change *for each intersection* between the new and old constituencies. More detail is provided in the methodological appendix.

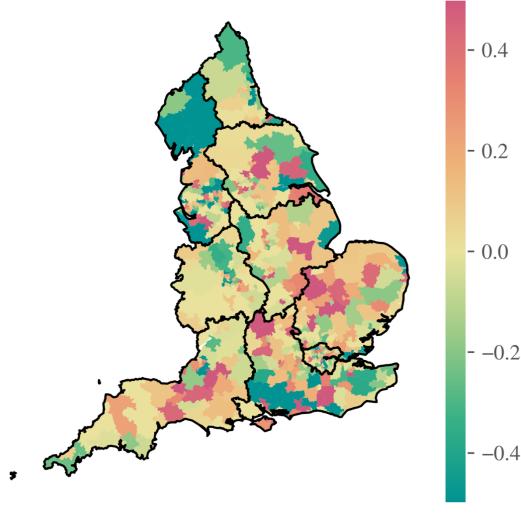
Overall, national median compactness and smoothness both decline in the BCE's draft plan compared to the current electoral map This suggests that the proposed constituencies are slightly more oddly shaped than the current ones when analysed at the aggregate national scale. This is not a cause for concern on its own.

However, a regional breakdown reveals notable geographic disparities. As shown in Table 1, that some regions have constituencies where compactness and smoothness has improved whilst there are others where shape has become more convoluted. This distinction follows the same regional pattern of inequality on fragmentation that we noted in the previous section. This is concerning, as districts that are dramatically rearranged into elongated and rough shapes may indicate boundary manipulation (Morril 1987).

Notably, we see a weak (.22) but significant correlation between the *inequality* of a constituency (as measured by the dispersion in Index of Multiple Deprivation scores) and our smoothness measure in both the current and draft plan. This suggests that districts with higher smoothness scores (whose boundaries are largely composed of straight lines with few indentations) are more likely to be unequal in terms of the deprivation of their inhabitants. It is very likely that this is due to urban districts, where simple shapes can group together communities with very different levels of deprivation. Put another way, it does not appear that the smoothness or compactness (or change thereof) is structurally related to deprivation.

As a caveat, the raw shape of a constituencies does not capture boundary manipulation on its own, although it has been used for seventy years to do so. One large factor is ignored by these measures: the structure of the population within the district. Oddly shaped districts may be drawn to collect communities along rivers, foothills, or roads. We acknowledge this and discuss this in the next section.

#### Accessibility changes are largely balanced within regions

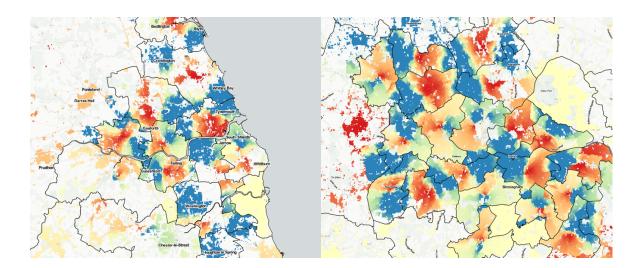

As the commission notes, constituency shape is a secondary concern to how that shape expresses the geographical structure of the population within it. Strangely shaped settlements are common as people sprawl out along riverfronts or concentrate into protected valleys to find suitable places to build communities. In the redistricting literature, this is well-recognised according to the concept of *accessibility*: how easy is it for members within a constituency to connect to one another? When a constituency is *accessible*, it is easy for voters within that constituency to interact with one another. When a constituency *is not accessible*, however, individuals may not be able to interact with people in their constituency easily.

We analyze accessibility here using the *population compactness* of a constituency as a proxy for accessibility. This measures how long a typical trip must be for members of a constituency to meet in the same place.<sup>5</sup> Since this is longer for rural constituencies and smaller for urban constituencies, we only examine the *percentage change* in trip times for people across a constituency. We show this in Figure 6, but again recommend consulting <u>the online map</u> "Accessibility (% Change)" and "Accessibility (% Change by Constituency)" layers for a more interactive display. In addition, the "raw" values are provided in the "Current Accessibility" and "Draft Accessibility" layers.

From this, map, we see that the North East (and the north of the North West) both have dramatic reductions to the accessibility of constituencies. That is *even though* these constituencies have much worse raw accessibility than elsewhere in the nation, they also become *less accessible* after redistricting. As the densities increase (moving southwards), the story becomes more mixed, as some cities (and constituencies within those cities) see marked changes to their population compactness.

For example, in Yorkshire & The Humber, improvements to areas in and around York are balanced against decreases in Thirsk and Malton or Bridlington and Holderness. Likewise, dramatic reductions in population compactness throughout the Southeast (East Hampshire, Chichester) are balanced against notable improvements (Oxford West and Abingdon, Didcot and Wantage, Mid Sussex). Cornwall, sees significant aggregate improvements to accessibility overall, but this is also balanced by worsening in Avon areas, bringing the overall "South West" to a net zero. We also do not see any systematic relationship between accessibility (or change thereof) and deprivation or inequality. This suggests that changes to constituencies are generally not associated with redistricting deprived areas "out of" or "into" districts. However, the aggregate picture obscures a significant amount of local detail.

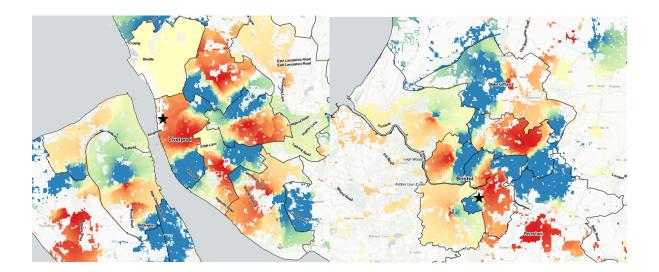
<sup>&</sup>lt;sup>5</sup> Details of this measure are provided in the methodological appendix.




Accessibility (% change)

**Figure 6:** Change in accessibility between the current and draft plans. Negative values are shown in green and mean that trips generally become shorter between constituents in that constituency, whereas red positive values indicate longer trips. <u>View online</u> with the "Accessibility (% Change by Constituency)" layer.

#### Accessibility improves in Birmingham and Newcastle


Indeed, the most important variation in accessibility occurs at a city, not regional level. And, further, serious variation exists within constituencies: there are usually parts of a constituency that are more remote than others. We illustrate this local analysis below with a few separate maps but encourage interested readers to follow along in the responsive online map. There, the "Accessibility (% Change)" layer measures the subconstituency change in accessibility for populations, or the "Accessibility (% Change by Constituency)." The sub-constituency accessibilities for each districting plan are available in "Current Accessibility" and "Draft Accessibility" layers.



**Figure 7:** Accessibility increases on average in Newcastle (left) and Birmingham (right) at the sub-constituency level. Red areas see improvements to accessibility and blue areas see reduction in accessibility. <u>View online</u> with the "Accessibility (% Change)" and "Draft Constituencies" layers.

The proposed Newcastle and Birmingham constituencies, shown in Figure 7, are much more accessible in the 2023 BCE plan than the existing constituencies. Serious improvements also exist in Preston, although this comes at the expense of communities on the urban edge who get pulled into the Ribble Valley constituency. The commission should be aware of local outliers (Wolverhampton South East, Sollihull) in Birmingham, though. While previous constituency lines followed the less-populated spaces between neighborhoods in Wolverhampton, the current boundary lines for Wolverhampton South East group together these neighborhoods. This *reduces* the overall accessibility for populations in the Wolverhampton South East constituency relative to the previous constituencies in the area, which largely drew lines through less populous parts of these urban areas.

#### Elsewhere, accessibility worsens in clear and distinctive ways



**Figure 8:** In contrast to Newcastle and Birmingham, constituency changes pictured here in central Liverpool and Bristol *decrease* accessibility. Red areas see improvements to accessibility and blue areas see reduction in accessibility. <u>View online</u> with the "Accessibility (% Change)" and "Draft Constituencies" layers.

Two other instructive examples come from Liverpool and Bristol, shown in Figure 8 Changes to Liverpool Riverside, despite improving the shape compactness of the constituency, worsen its *population compactness* as measured by accessibility. The area of Liverpool added to the Liverpool Riverside constituency (the blue area near the black star on the map on the left) is strongly north-south oriented in its urban structure; long major streets run along the course of the Mersey, but there are few eastwest-oriented streets crossing the Rupert Lane Recreation Grounds -- a "built environment barrier." Further, the southern part of the revised Liverpool Riverside district splits Toxteth from the rest of nearby areas with which it is more naturally grouped. This also shows (again) in an intense blue patch in the Accessibility Change map of south Liverpool Riverside. This suggests that the decision to split Toxteth from the rest of Liverpool Wavertree lumps together areas which are not easily accessible to one another and thus are likely not well-grouped. Therefore, its inclusion into the Liverpool Riverside constituency seriously reduces the overall accessibility of the constituency to its electorate. We see similar consequences in the proposed changes in Bristol East and Bristol South. In both cases changes to constituency boundaries "swap" communities between constituencies (such as Knowle, the blue "thumb" next to the black star on the map on the right), which leads to serious reductions in accessibility for people in those communities, and thus for the constituency population as a whole.

It is challenging to systematically identify these kinds of areas without a longer consultation period. However, it is immediately apparent when this kind of "fracturing" process happens in towns.<sup>6</sup> Similar issues are also clearly present in Leicester (Leicester East; Blaby, Oadby, and Wigston), Leeds (Dewsbury most clearly, but also in Halifax and Headingly), and Manchester (Bolton South and Walkden, Manchester Central, also Failsworth and Droylsden). While the story in London is quite complex, we also see this structure in some north London constituencies as well (High Barnett and Mill Hill, Hornsey and Wood Green, Hendon and Golders Green). These constituencies are the most likely to have "cracked" communities into separate constituencies, harming overall accessibility.

These are highly significant issues given the central place of accessibility In the BCE's statutory criteria, and should be resolved where possible. We encourage the commission to examine these areas further using the "Accessibility" layers in <u>our online map</u>.

#### Age and voting patterns

Age of the electorate is one well-known factor that has a structural relationship with vote choice, participation, and campaign spending. Indeed, voters of different ages may have quite different life priorities, which can translate into distinct electoral preferences between otherwise similar constituencies. Therefore, careful consideration of age distributions is a useful non-partisan way to examine representation among communities. Where possible, the national age distribution would be reflected in the distribution of ages by constituency; deviations from this may contribute to systematic biases for (or against) generations.

<sup>&</sup>lt;sup>6</sup> We use "fracturing" here in a similar manner to how "cracking" is used in the American literature on racial gerrymandering, to denote a situation where a geographical community is split into two (or more) constituencies in order to dilute the community's ability to elect candidates of its choice.

To conduct this part of the analysis, examine the age distributions of 482 constituencies of the 543 proposed new constituencies with 2019 ONS data on age distribution.<sup>7</sup> ONS anonymises age data for individuals over the age of 90 years old to avoid disclosure of identity. We focus on voters between the ages of 18 to 89 but acknowledge that that voters above 90 years of age are excluded here due to this data limitation.

Figure 9 summarises our key finding: the typical constituency is older than the typical voter. In the figure the horizontal line represents the average age of 48.6 of the 482 proposed constituencies analysed. Of these, just over one third (37.7%; n = 182) have average ages of 48.6 and below. When compared to the voting age population, this indicates a structural bias against younger voters.

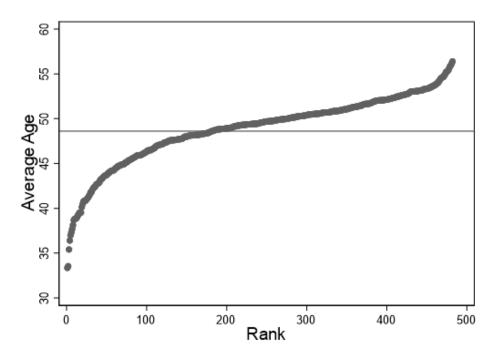



Figure 9. Average age per proposed constituency

Based upon most recent population estimates available, we estimate that the average voter (amongst those aged 18 to 89 years old) is 48.6 years old within the constituencies analysed and the median age is 48 years old. That means that half of all eligible voters are 48 years old or younger. However, when considering the proposed electorate

<sup>&</sup>lt;sup>7</sup> Source data from the ONS's Table SAPE22DT2: 'Mid-2019 Population Estimates for Lower Layer Super Output Areas in England and Wales'. See Appendix A for proposed constituencies that have been excluded from analysis due to failure of matching.

boundaries, the average constituency age rises to 49.5 years old. This means that the typical constituency is older than the typical voter, and that the BCE's draft plan may result in over-representation of places with older individuals.

While we would expect random fluctuations in population composition to result in constituencies that have populations at the extreme (i.e., a younger than average electorate; an older than average electorate), it is evident in Figure 9 that certain constituencies "pack" large amounts of young voters into single constituencies. The net consequence of this "packing" is underrepresentation of younger voters at the national level.

| Proposed Constituency | Average Age |
|-----------------------|-------------|
| Lowest average ages   |             |
| Manchester Central BC | 33.4        |
| Sheffield Central BC  | 33.5        |
| Bristol Central BC    | 35.4        |
| Leeds Central BC      | 36.4        |
| Headingley BC         | 37.0        |
| Highest average ages  |             |
| Christchurch CC       | 56.4        |
| West New Forest CC    | 56.2        |
| North Norfolk CC      | 56.0        |
| West Dorset CC        | 55.9        |
| Honiton CC            | 55.7        |

Table 2. Youngest five constituencies versus oldest five constituencies

Further evidence of this bias is evident in Table 2, which shows that the constituencies with the youngest on average population are within city centers while those with the highest average ages are within rural county constituencies. This correlates well with our understanding of how age factors into decisions about where to live. However, this has serious political consequences, as inter-city constituencies are likely to have lower spending caps and stronger third-party competition (as discussed in the next sections). As we explain in the second half of this report, lower spending caps in constituencies classified as 'Borough constituencies' are associated with stronger

third-party competition and more competitive elections as a whole. These conditions leave younger voters in a double bind: they are packed into constituencies with an excess of young voters *and* designated as Borough constituencies where spending caps are lower, minor party competition is stronger, competitiveness is higher. Thus, the general electoral preferences of younger people are diluted.

This finding is further confirmed in Figure 10 below, where we break down the constituencies into two parts: county constituencies (n=284) and borough constituencies (n=198). Averaging across all proposed constituencies, the average age within county constituencies is older (50.8) than borough constituencies (46.0). To address the inequality in age distribution amongst constituencies, we propose a crude estimate of half (241 of the 482) of the constituencies should either have averages at less than 48.6 years old or medians less than or equal to 48 years old. We understand that 182 constituencies have averages less or equal to 48.6. Looking more closely at the constituencies that are within the 3<sup>rd</sup> quintile (40% to 60%) listed in the methodological appendix, the median ages of an additional 20 constituencies are all 48 years old. With 202 constituencies for the commission to consider further on age-related electoral inequalities are highlighted in the methodological appendix, and on the <u>"Average Age by Constituency" layer in our online map.</u>

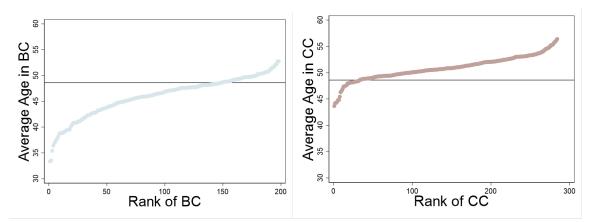



Figure 10: Average ages of Borough Constituencies versus County Constituencies

#### Historical macro-geographic boundaries are generally preserved

Throughout the history of parliamentary democracy at Westminster, MPs have represented spatially-bounded constituencies as it was rightly understood that each constituency should be a distinct community with distinct interests which ought to be represented by their constituency MP. This is what the BCE refers to when discussing *local ties* being preserved in districting plans. Even in the era of "rotten" and "pocket" boroughs prior to the 1832 Great Reform Act, parliamentarians appreciated the need to represent particular interests, and that such interests tended to be spatially defined. For example, members representing the Cinque Ports in the unreformed House of Commons traditionally spoke for the Navy, while members representing County constituencies represented the interests of landowners and MPs for Borough constituencies represented the interests of manufacturers and merchants (Blackstone, 1765). Similarly, in the modern era, the BCE notes that constituencies ought to respect the *local ties* of inhabitants, insofar as it is possible to do so while preserving the remaining statutory criteria.

As we discuss elsewhere in the report, many districts represent distinct communities with distinct interests. However, given the complex networks of human interaction, identifying such communities is by no means straightforward. Therefore, we employ community detection algorithms<sup>8</sup> to simplify these dense networks and identify the principal zones within which the majority of population movements between places occur. While community-detections algorithms simplify complex networks such as population movement networks, it is necessary to bear in mind that these networks are the product of economic, social and cultural factors, which are not easily disentangled from one another. For example, the town of Middlesbrough grew at a blistering pace in the latter half of the nineteenth-century, drawing in migrants from across England and Wales as the iron and steel industry in the town boomed (Yasumoto, 2011). Consequently, the network of human movement changed, as migrants met Middlesbrough's demand for labour by the end of the nineteenth century. Therefore, in order to identify barriers to human interaction that represent the longstanding cultural and historical boundaries of communities, rather than more

<sup>&</sup>lt;sup>8</sup> Details of this measure are provided in a methodological appendix.

transient networks of human interaction, we compare the regions produced from two very different human networks separated in time by a hundred years.

Using birthplace data derived from the 1911 individual-level census returns, the lifetime migration paths of those that had left the parental home were reconstructed and used to identify the principal boundaries within which migration occurred (Day, 2020). We compare this to commuting flows derived from the 2011 census. This exercise identified barriers to human interaction which have remained stable over the previous hundred years and which therefore – it can confidently be inferred – represent real and meaningful boundaries between communities which ought to be respected when drawing parliamentary constituency boundaries, designed to identify and represent discrete groups of voters in the House of Commons. These historically-justified *local ties* are then what we consider in subsequent figures.

Figure 11 compares the 'primary' boundaries produced by the community detection algorithm and identifies where the boundaries are stable and where they are unstable, i.e., where they have changed significantly between 1911 and 2011 and which are therefore unlikely to represent long-standing, meaningful boundaries between communities. Two boundaries deserve further comment; those boundaries around Birmingham – the West Midlands area – and those between Manchester and Leeds.

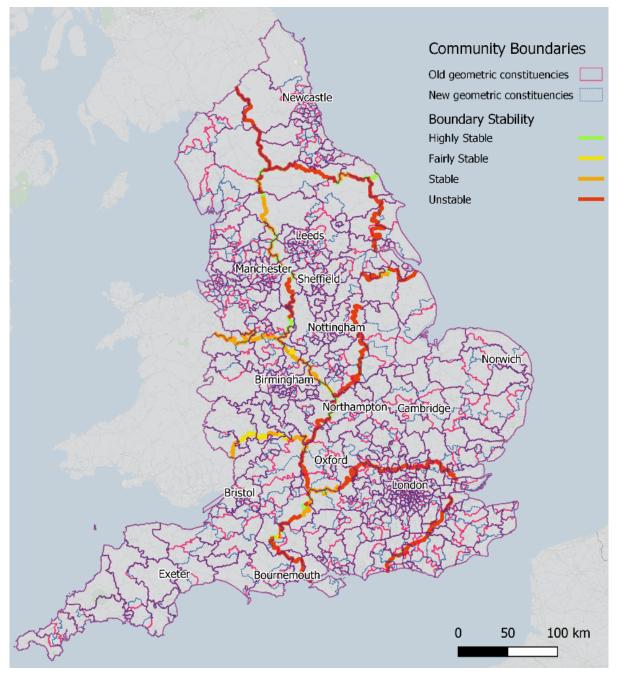



Figure 11: Historic communities and parliamentary constituencies

Figure 12 shows that by and large, the proposed constituency boundaries largely respect long-standing barriers to human interaction and delineate the separate communities effectively. Indeed, it is of interest that the route following approximately what is now the A5 between Crick and Shrewsbury appears to have represented a significant break in the network of human interaction for at least for past 100 years.

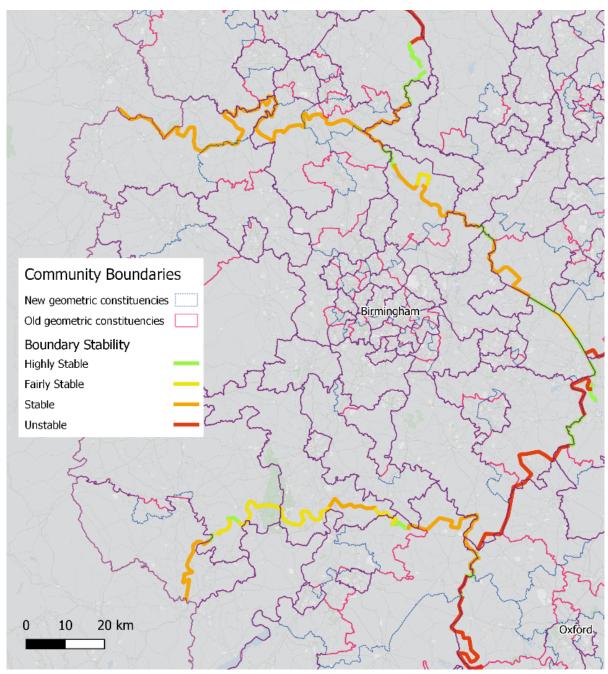
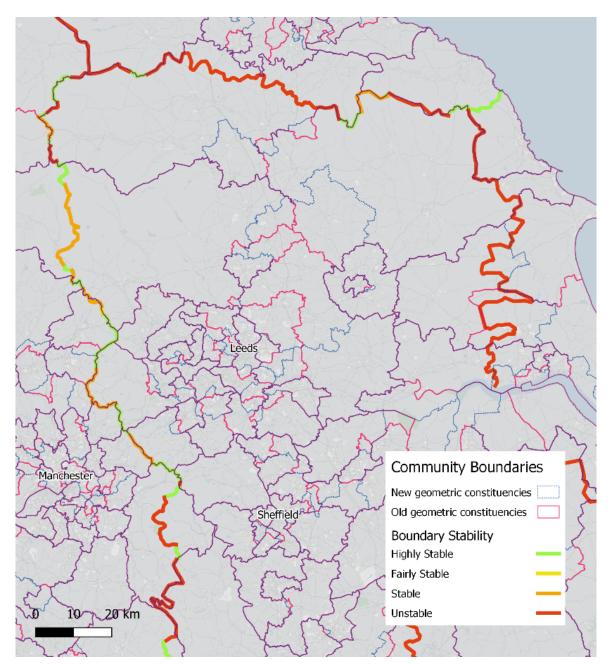




Figure 12: Historic boundary stability and constituencies in the Midlands.

However, this does not appear to be true in the case of the Pennines in Figure 13. While many of the proposed parliamentary boundaries do indeed follow the barriers identified in both 1911 and 2011, the physical geography of the Pennines, the Skipton and Ripon constituency is a notable exception.



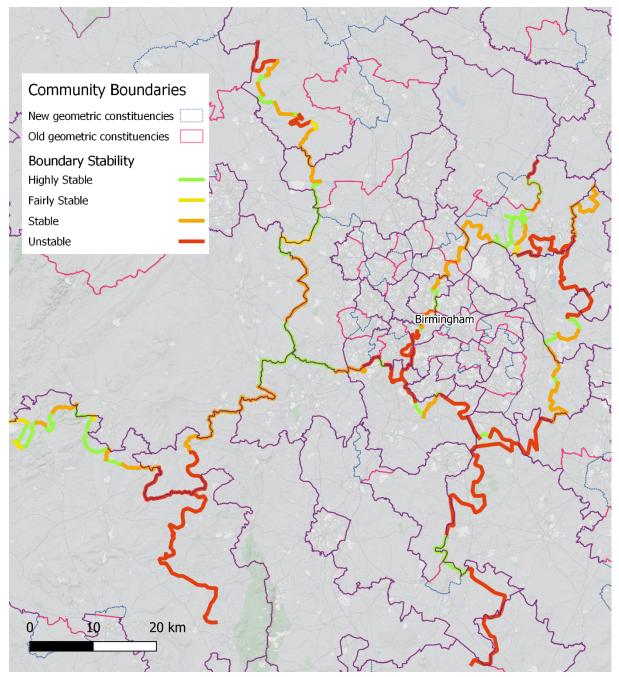

**Figure 13:** Historic community boundaries and constituency boundaries around Leeds, Sheffield, and Manchester.

Figure 13 shows that the proposed boundaries between the constituencies around Leeds and Manchester follow the stable barriers to human interaction over the past hundred years with remarkable accuracy. Indeed, the boundaries between the constituencies of Pendle and Keighley, Burnley and Bacup, Rochdale and Calder Valley, High Peak, Oldham East and Saddleworth and Colne Valley, clearly delineate the barriers separating these communities. However, a stable boundary runs straight through the middle of the Skipton and Ripon constituency. While the challenge of constructing parliamentary constituencies which contain the number of electors

within the statutorily required tolerances is appreciated, especially in lightly populated areas, the evidence presented here shows that the towns of Settle and High Bentham have – despite being in the county of Yorkshire – been historically more integrated with Lancashire. Indeed, it is worth pointing out that Ripon – which under the current proposals would be in the same parliamentary constituency as Settle – are separated by the Pennines, a good hour and a half drive on B roads through the Yorkshire Dales. It would therefore be inappropriate to form a single constituency across a barrier as long-standing as the one that separates Settle and High Bentham from Ripon.

While the barriers between such so-called 'primary' zones of human interaction are of course meaningful, so too are the secondary boundaries within each primary zone. As Figure 11 shows that the region around Birmingham (the West Midlands) was the most stable zone of human interaction between 1911 and 2011, the network of human interaction which occurred within this zone is compared over the hundred-year period, in order to identify stable barriers. The results are shown in Figure 14.

While some constituency boundaries closely follow long-standing barriers between communities - between the constituencies of Ludlow and Bridgnorth from that of Kingswinford and South Staffordshire for example, Figure 14 reveals a salient truth of urban communities. While it might be tempting to conceive of urban constituencies as homogenous – and the boundaries between them as arbitrary –Figure 14 shows that long-standing boundaries do exist in urban settings, and that the boundary on the eastern edge of Birmingham separates it from Wolverhampton. In a rural setting, small populations would mean that minor deviations from historically stable barriers would have little effect, but in a densely populated urban environment, large numbers of electors whose regional centre was Wolverhampton, a Birmingham-based parliamentary constituency would profoundly misrepresent the community to which they belonged. We would therefore urge the BCE to pay close attention to urban constituencies, such that constituencies in which electors are placed adequately reflect the communities of which they are a part, and that in an urban context, the slim barriers between such communities necessitate especially meticulous consideration.



**Figure 14:** Historic community boundaries and constituency boundaries in the West Midlands around Birmingham.

#### **Designations & Density**

One other important role the BCE plays beyond drawing the lines is in determining the *designations* of constituencies. This *designation* is intended to separate "rural" from "urban" constituencies. Criteria for these decisions is provided by the BCE:

The BCE considers that, as a general principle, where constituencies contain more than a small rural element they should normally be designated as county constituencies. In other cases, they should be designated as borough constituencies.

The designation also determines the limit on the amount that a candidate is allowed to spend during a Parliamentary election in the constituency. The limit is slightly lower in borough constituencies, to reflect the lower costs of running a campaign in a more geographically compact urbanised area.

The BCE also provides population density data with their draft constituencies to demonstrate the density of different constituencies. While not explicitly stated, we infer that population density could both to contribute to the statutory goal of constituency *accessibility*, as well as serve as an indicator to help determine these constituency designations. As we argue in subsequent sections, however, population density may not be the best metric to understand accessibility, or indeed even how we *experience* urban-ness.

Deciding what is "urban" and what is "rural" can be quite challenging, but these revised designations create a serious inequality in campaign spending allowances across England which, in turn affects the competitiveness of elections (Fournaies, 2021). For example, Fournaies (2021) finds

"when spending limits are increased, campaigns become more expensive [...]; the pool of candidates shrinks and elections become less competitive; and the financial and electoral incumbency advantages are amplified". (p. 409)

Thus, a seemingly apolitical decision such as the constituency designation can have serious partisan consequences, depending on *whose constituencies* get redesignated.

Therefore, this section examines whether proposed changes to classifications (a) are made with consistent reasoning relative to the stated criteria on urbanity/ruralness, (b) are likely to affect the competitiveness of elections based on the proposed

boundaries, and (c) whether differences in potential cost of elections in current Borough and County constituencies are associated with spending patterns by 'major' and 'minor' parties. Designations are visible in <u>the online map</u> by clicking/tapping on the constituencies, and designation *changes* are available in the "Designation Changes" layer. Population density is shown by default in the "Population" layer, which comes from the most recent WorldPop constrained population estimates for 100m grid cells.

| Constituency           | Draft Designation | Designation | Density |
|------------------------|-------------------|-------------|---------|
| Bristol North West     | Borough           | Borough     | 460.27  |
| Peterborough           | County            | Borough     | 419.07  |
| Filton & Bradley Stoke | County            | County      | 1623.60 |
| Hornchurch & Upminster | County            | Borough     | 1399.53 |
| Hartlepool             | County            | Borough     | 723.71  |
| Dewsbury               | Borough           | County      | 1441.11 |

#### *Raw density reported by the BCE is inconsistent for designations*

**Table 3:** selected constituencies linked across the draft and existing plans, alongside the constituency's population density, reported by the BCE. Borough constituencies are those that are "containing a predominantly urban area."

To start this discussion, we examine the consistency in (re)designations across parliamentary constituencies. Immediately, we see that there is a very wide range of population densities across different designations. We link constituencies with the same name across the current and draft plans.<sup>9</sup> In total, we were able to link 336 (about 61%) of constituencies in this manner. This allows us to examine the population density of the constituency (as presented in the draft plan), along with the current and new (if altered) designations.

Since designations have serious consequences for campaign spending and marginality, it is important to implement the designations consistently between areas with similar population densities. However, this appears not to be the case. This

<sup>&</sup>lt;sup>9</sup> Since constituency naming is preserved when constituency boundaries remain (largely) the same, this links constituency where the commission thought substantially the same area was represented.

creates the potential for different levels of campaign spend in otherwise similar areas. Politicians in very dense "County" constituencies are able to maximise the reach of their campaign spend since the size of the "small rural element" is not specified. On the other hand, those in sprawling low-density "Boroughs" may have a harder time reaching their prospective voters.

We present a selection of constituencies to illustrate our point in Table 3. There, you can see that some constituencies, such as Bristol North West, remain Borough Constituencies with relatively low population densities, while others (such as Peterborough) get re-classified to County Constituencies. In contrast, some County Constituencies that *remain* Counties, such as Filton and Bradley Stoke, have nearly *four times* the population density as re-classified Peterborough.

This occurs at the same time some other Boroughs (such as Hartlepool, which sees no change *in its boundaries*) are re-classified as Counties while having approximately the same population density as Counties that become Boroughs (such as Dewsbury, which absorbs part of the former Batley and Spen constituency). Thinking regionally, constituencies in the North East, North West, and Yorkshire & the Humber regions comprise the majority (65%) of re-classifications from Borough to County, meaning that constituencies in those areas will generally see increased campaign spending, fewer minor-party candidates (such as Greens or Liberal Democrats) and more competitive elections.

Therefore, we believe that clearer general rules, or at least specific justifications for the 29 existing constituency reclassifications we see, should be provided by the BCE. Further, we are mindful that this only occurs among the 61% of constituencies we can unambiguously link between existing and draft plans; it is also possible that highly reconfigured areas (such as those we identify in the previous sections) will also experience significant increases in spending.

#### Lived density, a better measure, still shows inconsistencies

However, despite these significant disparities in *density*, we do not think this metric is the most appropriate for the BCE to consider. Instead, we strongly encourage the consideration of a measure of *lived density*, which reflects how compact the population

that lives in the constituency is spread *across inhabited areas*. Thus, a constituency with very dense, concentrated populations will have higher *lived density*, even if these constituency must stretch to accommodate disparate towns.

| Constituency           | Draft   | Current | Density | Lived Density |
|------------------------|---------|---------|---------|---------------|
| Bristol North West     | Borough | Borough | 460.27  | 3406.14       |
| Peterborough           | County  | Borough | 419.07  | 3647.74       |
| Filton & Bradley Stoke | County  | County  | 1623.60 | 2365.19       |
| Hornchurch & Upminster | County  | Borough | 1399.53 | 3355.69       |
| Hartlepool             | County  | Borough | 723.71  | 2960.83       |
| Dewsbury               | Borough | County  | 1441.11 | 3362.62       |

**Table 4:** Comparisons of raw population density, *lived* density, and designation among the constituencies mentioned in Table 3.

Many lived density metrics exist, but here we compute it directly from the WorldPop population raster from 2020 using the BCE's draft constituencies and present the correlation in Figure 14. There, we see that most constituencies have a higher lived density than raw population density. Most importantly, the lived population density can be much higher (relatively speaking) than the comparable raw population density. That is, a constituency with very low population density can have nearly the median *lived* density, which suggests these constituencies are collections of very dense settlements. Further, as density increases, the relationship tightens between the two.

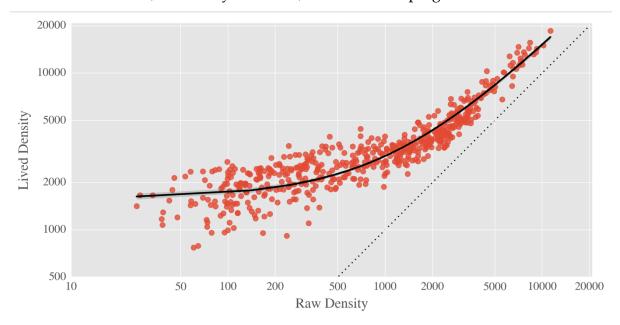



Figure 14: Raw and lived population densities for constituencies in the BCE 2023 plan.

This metric much better captures the fuzzy overlap of the constituency density profiles we considered in Table 3. In Table 4, we show the lived density, which is much more similar between *all* of these constituencies. This still suggests that the decisions made about the proper designations for constituencies needs attention, however, since the concerns relating different designations remain: Peterborough has an extremely high lived density, for example, but is changed from a Borough to a County, yet Dewsbury, which has lower lived density, is reclassified from a County to a Borough. Thus, the decisions around designation remain unclear; with such large political (not partisan) implications, this deserves further dedicated attention from the commission to clarify the re-designation decisions, especially for the constituencies that do not change boundaries substantially like Hartlepool.

#### Draft (Re)Designations may reduce competitiveness

To visualize the changes in the constituency designations, the <u>web map provides a</u> <u>"Designation Changes" layer</u>. Using data compiled by Fouirnaies (2021), we examine the relationship between Borough and County classification and the competitiveness of elections for the current boundaries in the 2015, 2017, and 2019 elections. We use constituency-level data in a cluster-robust linear regression (clustered by constituency). Major parties were defined as Labour and the Conservatives, owing to the sizeable difference between their levels of spending and any other party.

The results of the regression model examining the competitiveness of elections in Borough and County constituencies is presented in Table 5. This model controlled for the year of the election, the size of the electorate, and region. The reference region was North West England as this was a median region for the average number of candidates per election.

The average election in 2015 in a Borough constituency and with the mean number of electors in North West England was estimated to involve six candidates. Elections in County constituencies, with higher spending limits, were found to be less competitive, averaging 0.41 fewer candidates than Borough elections. While this seems slight, it suggests a chilling effect on minor party competition in County elections. Moving to constituency size, for every extra thousand electors in a constituency, elections were

estimated to have a very small increase in the number of candidates – for example, it would take around an additional 40,000 electors for the size of electorate to equal the effect of being a Borough constituency. Given the relatively tight range of constituency electorates, then, this effect is quite marginal indeed. There were also regional variations in the competitiveness of elections, with Greater London, South-East England, and Yorkshire and the Humber tending to have more candidates than the median region.

| Variable                        | Estimate                               | 2.50% | 97.50% |  |  |
|---------------------------------|----------------------------------------|-------|--------|--|--|
| Constant                        | 6.08                                   | 5.90  | 6.25   |  |  |
| Year (2017)                     | -0.94*                                 | -1.06 | -0.82  |  |  |
| Year (2019)                     | -0.96*                                 | -1.09 | -0.84  |  |  |
| Constituency Category (County)  | -0.41*                                 | -0.54 | -0.28  |  |  |
| Number of Electors (1000s)      | 0.01*                                  | 0.00  | 0.02   |  |  |
| Region (Reference: North West E | Region (Reference: North West England) |       |        |  |  |
| East England                    | -0.05                                  | -0.28 | 0.17   |  |  |
| East Midlands                   | 0.02                                   | -0.20 | 0.24   |  |  |
| Greater London                  | 0.58*                                  | 0.27  | 0.88   |  |  |
| North East England              | 0.19                                   | -0.06 | 0.44   |  |  |
| South East England              | 0.33*                                  | 0.10  | 0.56   |  |  |
| South West England              | -0.08                                  | -0.28 | 0.11   |  |  |
| West Midlands                   | -0.11                                  | -0.30 | 0.07   |  |  |
| Yorkshire and the Humber        | 0.56*                                  | 0.30  | 0.82   |  |  |

Table 5: Regression results for model examining the competitiveness of elections.

In summary, constituency classification is associated with change in election competitiveness for these boundaries, though there is some further regional variation to competitiveness. Based on this simple model accounting for classification, electorate size, and region, across the 29 reclassified constituencies one would expect a combined 7 fewer candidates to run in this set of constituencies' elections compared the actual number that ran in 2019. Thus, without a clearer picture of *why* these redesignations were conducted (especially without change of boundaries), we suggest that this anticompetitive effect should be avoided.

#### Draft (Re)Designations may inflate minor party campaign spend

Using the same data compiled by Fouirnaies (2021) that we analyzed in the previous section, we examine the proportion of possible spending by major and minor parties were examined across the 2015, 2017, and 2019 elections using a mixed-effects linear regression model (candidates nested within constituencies) with variables at the candidate and constituency level. The results are presented in Table 6. This model controlled for the year of the election, competitiveness of the election, size of the electorate, incumbency of the candidate, and region. The reference region was the East of England as this was the median region for average proportion of possible spending.

| Variable                                     | Estimate | 2.50%  | 97.50% |  |  |
|----------------------------------------------|----------|--------|--------|--|--|
| Constant                                     | 48.02    | 44.82  | 51.23  |  |  |
| Year (2017)                                  | -0.25    | -1.68  | 1.16   |  |  |
| Year (2019)                                  | 6.18*    | 4.72   | 7.63   |  |  |
| Number of Candidates                         | -0.82*   | -1.37  | -0.28  |  |  |
| Electors (1000s)                             | -0.18*   | -0.31  | -0.05  |  |  |
| Incumbent                                    | 29.54*   | 27.87  | 31.21  |  |  |
| Constituency Designation (County)            | -9.88*   | -12.19 | -7.59  |  |  |
| Member of Minor Party                        | -30.21*  | -31.93 | -28.50 |  |  |
| Member of Minor Party * Designation (County) | 8.86*    | 6.65   | 11.07  |  |  |
| Region: Reference (East of England)          |          |        |        |  |  |
| East Midlands                                | -2.93    | -6.74  | 0.88   |  |  |
| Greater London                               | 0.09     | -3.55  | 3.72   |  |  |
| North East England                           | -3.79    | -8.40  | 0.82   |  |  |
| North West England                           | -1.65    | -5.15  | 1.85   |  |  |
| South East England                           | -0.40    | -3.69  | 2.89   |  |  |
| South West England                           | 6.53*    | 2.90   | 10.15  |  |  |
| West Midlands                                | -2.18    | -5.87  | 1.52   |  |  |
| Yorkshire and the Humber                     | -1.35    | -5.01  | 2.32   |  |  |

**Table 6:** Regression results for a model examining the percentage of the spending limit used across constituencies in elections from 2015, 2017, and 2019.

Interpreting these results, we see that a candidate running in 2015, in an election with the mean number of candidates and electors, who was not an incumbent, was a member of a major party in a Borough constituency in the median region, was estimated to have spent around 48% of the possible limit in their campaign. There was a significant interaction between major/minor party classification and constituency classifications in terms of the percentage of possible spending by candidates. Major party candidates in County constituencies – with a higher spending cap – tended to spend around 9.9% less (spending 38.1%) of the possible limit than major party candidates in Borough constituencies. Minor party candidates in Borough constituencies spent around 30.2% less (spending 17.81%) than major party candidates in Borough constituencies. Minor party candidates in County constituencies however spend around 8.9% more (26.7%) than their colleagues in Boroughs, in a reversal of the trend seen for major parties. There was little regional variation evident around the median, as only the South West presented a significant difference with candidates in the South West spending around 6.5% more of the possible limit than candidates in the median region (East of England).

In summary, based on this data and modelling, constituency classification is associated with different spending patterns for major parties and minor parties. Major parties tend to spend more of the spending limit in Borough constituencies where there is a lower cap, whilst minor parties spend more of the limit in higher-cap County constituencies. This suggests that reclassifications, such as the redesignation of Hartlepool as a County Constituency, will have serious effects on minor parties and will structurally affect the geography of minor party competitiveness. We encourage the commission to re-examine the patterns of re-designation noted above in light of these political effects, and encourage the public to <u>view the re-designations online</u>.

# Conclusion

Redistricting a nation is no small task, and we believe that the BCE proposals provide an important first iteration of the process. However, some of the districting decisions, such as constituency re-designations, deserve much more thorough (and specific) justification. There are quite a few instances where redistricting changes severely harm *accessibility* of a district to its inhabitants, in the sense that voters are less wellconnected to one another. We detail how the extensiveness of change in the electoral geography is concentrated in the North of England and London in terms of district instability, district shape, and accessibility, as well as how specific constituency changes on the urban/rural periphery result in severe decreases to accessibility. We uncover age-related issues with the constituency design, showing how younger voters are placed in a "double bind:" packed into urban districts with lower spending caps, more competitive elections, and stronger third-party competition.. We also find that constituency designations do not align well with stated criteria of urban/ruralness.

Throughout this report, we have encouraged the BCE to take a second look at several districts, and these are outlined in the executive summary. While we acknowledge that the potential for change may be limited by the cascading effect that this has on other districts. Fortunately, constituency *designations* can be changed without cascading effects, and we encourage the commission to review this further. In total, we hope the commission can respond to these specific concerns, as they note that this district plan has a high likelihood of becoming enacted into law.

# Methodological Appendix

### **Constituency Boundary Fragmentation**

Boundary fragmentation can be estimated using information-theoretic approaches (Nowosad and Stepinski, 2018). Specifically, *entropy* has long been used to characterise the change in boundaries in zoning problems. For a given district i in plan P, we can use its area  $A_i$  to compute the *areal entropy* of plan P. This reflects the evenness of district areas. This can be computed by examining the *proportion of area*,  $p_i$ , within district i:

$$p_i = \frac{A_i}{\sum_i^n A_i}$$

Then, the entropy of the entire districting plan is computed directly from  $p_i$ :

$$h_a^P = \sum_i^n p_i \log(p_i)$$

This characterises the total discrepancy in district sizes. We use it as a *normalizing factor* to compute the *overlay entropy* of a district, which measures how strongly a district in the draft plan is split among districts in the previous plan. Let  $p_{ij}$  denote the fraction of draft district *i*'s area that falls within the *j*th current constituency. Then, the *overlay entropy* of draft districts onto current constituencies *Q* is measured by:

$$h_i = \frac{1}{h_a^Q} \sum_{j}^{n} p_{ij} \log(p_{ij})$$

This factor is large when districts in the draft plan are split very evenly across districts in the previous plan. Put another way, this is large when districts in the draft plan are formed from many equally sized cuts from existing districts and is small (or zero) when the current districts are drawn from exactly one current district. Thus, taking an existing district and splitting it into two, following exactly the old boundaries of the main district, results in lower fragmentation values.

### Measurements of Smoothness and Compactness

Our measures of smoothness and compactness are driven by four separate measures of constituency shape:

- *boundary amplitude,* which is the perimeter of the convex hull of the constituency divided by the perimeter of the constituency itself. This measure is close to 1 when the boundary is perfectly smooth, with no indentations or deviations from the convex hull, and becomes zero when the boundary becomes highly indented (Brinkhoff et al. 1995, Wolf 2017).
- *convex hull areal ratio,* which is the area of the constituency divided by the area of the constituency itself. This measure is close to 1 when the constituency is extremely convex, with no indentations or deviations from the convex hull, and becomes zero when the boundary becomes highly non-convex (Ansolabehere & Snyder 2015).
- *isoperimetric quotient,* which is the area of the district divided by the area of the circle with the same perimeter as the district. This is close to 1 when the shape is very close to a circle, and zero otherwise (Polsby and Popper, 1991).
- *minimum bounding circle areal ratio,* which is the area of the district, divided by the area of a circle that contains the district (Reock, 1961).

These measures are correlated with one another, but each does provide a distinctive view of the shape of a district. Some are much more strongly correlated than others; the boundary amplitude and isoperimetric quotient are highly correlated (generally speaking) because they use information about constituency *perimeters*. Formally, the boundary amplitude is generally taken to be a measure of *boundary indentation*, and the isoperimetric quotient is taken to be a measure of *circularity*, but each are generally very correlated in the data we on both new and old constituency plans. While the *convex hull areal ratio* is generally taken to be a measure of *convexity* and the *minimum bounding circle areal ratio* is generally taken to be a measure of *elongation*, the two are less strongly related than the two perimeter-based ratios.

Therefore, to pull these different measurements together into our indices of smoothness and compactness, we compute these measures for all districts in the current and draft plans. Then, we run a factor analysis on the pooled scores, to split the scores into two dimensions. Doing this, we see a very strong loading of boundary amplitude and isoperimetric quotient on factor 1 (smoothness), since both measure perimeter-specific properties, whereas loadings for the convex hull and minimum bounding circle areal ratio focus more on factor 2 (compactness). However, none are perfectly loaded, so they each contribute something to the two measures. The loadings

are generally invariant to reasonable rotations (none, quartimax, or varimax are tested). Further, to avoid strong shoreline/fractal dimensionality effects, we simplify and quantise the boundaries of constituencies to a consistent level of detail after clipping the districts to the shoreline. While this is not complete protection from fractal dimension effects on the perimeter measures, it provides boundaries with consistent resolution.

#### Measuring Population Compactness

To measure population compactness, we use a very old measure deriving from studies of districting in the 1960s (Weaver & Hess 1963, Boyce & Clark 1964). We use *inertia*. At a high level, it is large when residents are generally far from one another, and it is smaller when residents are close to one another. There is no absolute maximum on this score, although the score is generally higher when populations are concentrated on the *boundaries* of constituencies and zero when populations are concentrated exactly on the center of the district. This means that the measure can be useful to analyze *cracking*, where a populated community is cut in two by the constituency boundary. Mathematically, we compute inertia as the population times the squared distance from the population center of the constituency. Thus, for an arbitrary location *k* within the district, its contribution to inertia is:

$$I_k = p_k d(k,c)^2$$

Where *c* is the population center. For the purposes of our study, we use the WorldPop 2020 estimates (Tatem, 2017), which are the most recent at the time of publication. Further, we use *trip distance* (Foti et al. 2012), rather than Euclidean distance, to reflect the very different natures of accessibility across England. We requested electorate estimates at the ward level from the commission. These were present online in the bcereviews.org.uk website, but we were informed that they would not be supplied to the public. In lieu of these, WorldPop data provides a high-quality alternative.

#### **Community Detection**

We employed community detection algorithms in order to create homogenous clusters of areas in the UK not based on the characteristics of these areas, but, instead, on the population flows originating from or destining in these areas during different time periods. Simply put, the areas clustered within the same communities are more densely connected in comparison to the connections they share with the rest of England. Hence, these communities represent some sort of 'functional' regions which reflect the activity space of individuals in different time periods.

In order to create these communities, we built two networks based (i) on the 2011 commuting flows between the Census Output Areas and (ii) on migration data from the 1911 census data (Day, 2020). Given the relatively large size of these networks, we employed the 'fast and greedy' algorithm (Clauset et al, 2004) as implemented in the igraph package for the statistical software R (Csardi and Nepusz, 2006). Our analysis consisted of two steps. At the first step, we utilised all the flows within England and we fed them to the community detection algorithm separately for the 1911 and the 2011 data. The resulting communities represent the 'optimal' solution for England. We mapped these communities and compared their boundaries with the prosed draft boundaries. At a second stage we focused on what appeared to be the West Midlands regions in the communities derived from both networks. We subset the networks to only include flows within this region and we re-run the analysis only for these flows. The outcome was a much more detailed picture for the activity spaces within West Midlands for 1911 and 2011. Again, these results were mapped and compared with the proposed boundaries to assess to what extend they respect or ignore such activity spaces, some of which appear to be stable for over a century.

## Lived Density

Lived density is a relatively old concept but has found some major uses in recent analysis of population structure (Rae, 2018; Babbitt et al. 2020). It omits unpopulated areas from the computation of the "area" in which people live. This means that constituencies that contain sprawling but populated areas tend to reduce the *lived density*, whereas constituencies with a few very dense towns will have larger lived density, all else holding equal. We compute this directly from the WorldPop 2020 constrained population estimates (Tatem, 2017), dropping cells where fewer than one person are estimated to live.

## Age Inequalities

Constituencies that failed to match between the ONS and existing data are below:

| Aylesbury CC                          | Marlow and South Buckinghamshire CC |
|---------------------------------------|-------------------------------------|
| Basingstoke BC                        | Melksham and Devizes CC             |
| Brent Central BC                      | Mitcham and Morden BC               |
| Brentford and Isleworth BC            | North Cornwall CC                   |
| Camborne and Redruth CC               | Northampton North BC                |
| Cambridge BC                          | Northampton South BC                |
| Camden Town and St John's Wood BC     | Oxford East BC                      |
| Carshalton and Wallington BC          | Princes Risborough CC               |
| Chesham and Amersham CC               | Rother Valley CC                    |
| Chippenham CC                         | Rotherham BC                        |
| Chorley CC                            | Ruislip, Northwood and Pinner BC    |
| City of London and Islington South BC | Salford BC                          |
| Corby and East Northamptonshire CC    | Salisbury CC                        |
| Daventry CC                           | South East Cornwall CC              |
| Deptford BC                           | South Northamptonshire CC           |
| Ealing Central and Acton BC           | Southall BC                         |
| Ealing North BC                       | Southgate and Barnet East BC        |
| East Isle of Wight CC                 | St Austell and Newquay CC           |
| Edmonton BC                           | Stanmore and Edgware BC             |
| Enfield North BC                      | Sutton Coldfield BC                 |
| Feltham and Heston BC                 | Trowbridge and Warminster CC        |
| Finchley and Muswell Hill BC          | Truro and Falmouth CC               |
| Hammersmith and Chiswick BC           | Twickenham BC                       |
| Harrow BC                             | Uxbridge and South Ruislip BC       |
| Hartlepool CC                         | Wellingborough and Raunds CC        |
| Haves and West Drayton BC             | West Hampstead and Kilburn BC       |
| Hendon and Golders Green BC           | West Isle of Wight CC               |
| High Barnet and Mill Hill BC          | West fiste of Wight CC              |
| High Wycombe CC                       |                                     |
| Hornsey and Wood Green BC             |                                     |
| Kentish Town and Bloomsbury BC        |                                     |
| Kenton and Wembley West BC            |                                     |
| Kenton and Wentbley West DC           |                                     |

## Kettering CC Lewisham East BC

In addition, the ranked list of all proposed constituencies between 40<sup>th</sup> to 60<sup>th</sup> percentile is provided below. Blue indicates constituencies that are less than or equal to the population average. Green highlights constituencies with median ages less than or equal to the population median. Pink indicates those constituencies that are in the top half of the highest age range. Constituencies without a highlight (that mainly fall between the median and mean ages, may need to be reconsidered based to resolve age-related disparities in electoral representation.

| Rank | Proposed Constituency           | Average Age | Median Age |
|------|---------------------------------|-------------|------------|
| 146  | Luton North BC                  | 47.9        | 46         |
| 147  | Stevenage CC                    | 48.0        | 47         |
| 148  | Gillingham and Rainham BC       | 48.0        | 47         |
| 149  | Oldham East and Saddleworth CC  | 48.0        | 48         |
| 150  | North West Cambridgeshire CC    | 48.0        | 47         |
| 151  | Ashton-under-Lyne BC            | 48.0        | 48         |
| 152  | Stretford and Urmston BC        | 48.1        | 47         |
| 153  | Maidstone and Malling CC        | 48.1        | 47         |
| 154  | Cheltenham BC                   | 48.1        | 47         |
| 155  | North West Hampshire CC         | 48.1        | 47         |
| 156  | Harlow CC                       | 48.1        | 47         |
| 157  | Weybridge and Chertsey CC       | 48.1        | 47         |
| 158  | Chingford and Woodford Green BC | 48.1        | 47         |
| 159  | Windsor CC                      | 48.2        | 47         |
| 160  | Bexleyheath and Crayford BC     | 48.2        | 47         |
| 161  | Bournemouth East BC             | 48.2        | 47         |
| 162  | Sunderland Central BC           | 48.2        | 48         |
| 163  | Knowsley BC                     | 48.2        | 48         |
| 164  | Liverpool West Derby BC         | 48.2        | 48         |
| 165  | Buckingham and Bletchley CC     | 48.2        | 47         |
| 166  | Wolverhampton West BC           | 48.2        | 47         |

| 167 | Doncaster Town CC                   | 48.3 | 47 |
|-----|-------------------------------------|------|----|
| 168 | Basildon and Billericay BC          | 48.3 | 47 |
| 169 | Bury South BC                       | 48.3 | 48 |
| 170 | Dunstable and Leighton Buzzard CC   | 48.3 | 47 |
| 171 | Heywood CC                          | 48.3 | 48 |
| 172 | South Basildon and East Thurrock CC | 48.3 | 48 |
| 173 | Croydon East BC                     | 48.3 | 48 |
| 174 | Walsall BC                          | 48.4 | 47 |
| 175 | Southend West BC                    | 48.4 | 47 |
| 176 | St Albans CC                        | 48.4 | 47 |
| 177 | Ashford CC                          | 48.4 | 48 |
| 178 | Norwich North BC                    | 48.4 | 47 |
| 179 | Wakefield BC                        | 48.5 | 48 |
| 180 | Stockton North CC                   | 48.5 | 48 |
| 181 | Bolton North East BC                | 48.6 | 48 |
| 182 | Bootle BC (Average)                 | 48.6 | 49 |
| 183 | Dudley BC                           | 48.7 | 48 |
| 184 | Swindon North CC                    | 48.7 | 48 |
| 185 | Gravesham CC                        | 48.7 | 48 |
| 186 | Barnsley South CC                   | 48.7 | 49 |
| 187 | Bloxwich and Brownhills BC          | 48.8 | 48 |
| 188 | Sheffield South East BC             | 48.8 | 48 |
| 189 | Halifax CC                          | 48.8 | 48 |
| 190 | Batley and Hipperholme BC           | 48.8 | 48 |
| 191 | St Neots CC                         | 48.8 | 48 |
| 192 | Hitchin CC                          | 48.8 | 48 |
| 193 | Kingston upon Hull East CC          | 48.9 | 49 |
| 194 | Sidcup and Welling BC               | 48.9 | 48 |
| 195 | Sittingbourne and Sheppey CC        | 48.9 | 49 |
| 196 | Hornchurch and Upminster CC         | 48.9 | 48 |
| 197 | Birkenhead BC                       | 48.9 | 49 |
|     |                                     |      |    |

| 199 | Warrington South CC                   | 48.9 | 48 |
|-----|---------------------------------------|------|----|
| 200 | Great Grimsby and Cleethorpes BC      | 48.9 | 49 |
| 201 | Hertford and Stortford CC             | 48.9 | 48 |
| 202 | Nuneaton CC                           | 48.9 | 49 |
| 203 | Kingston upon Hull West and Hessle CC | 48.9 | 49 |
| 204 | Broxbourne CC                         | 49.0 | 48 |
| 205 | Pontefract and Castleford CC          | 49.0 | 49 |
| 206 | Burnley and Bacup CC                  | 49.0 | 49 |
| 207 | Burton CC                             | 49.1 | 49 |
| 208 | Croydon South BC                      | 49.1 | 48 |
| 209 | Chester North and Neston CC           | 49.1 | 49 |
| 210 | Epping Forest CC                      | 49.1 | 48 |
| 211 | Jarrow and Sunderland West BC         | 49.2 | 49 |
| 212 | Bromley BC                            | 49.2 | 48 |
| 213 | Wigan CC                              | 49.2 | 49 |
| 214 | Denton and Hyde CC                    | 49.2 | 49 |
| 215 | Cannock Chase CC                      | 49.2 | 49 |
| 216 | Blackpool South BC                    | 49.2 | 50 |
| 217 | Woking BC                             | 49.3 | 48 |
| 218 | Bury St Edmunds and Newmarket CC      | 49.3 | 49 |
| 219 | Hyndburn CC                           | 49.3 | 49 |
| 220 | Didcot and Wantage CC                 | 49.3 | 48 |
| 221 | Newport and Wellington CC             | 49.3 | 48 |
| 222 | Barnsley North CC                     | 49.3 | 50 |
| 223 | Romsey and Southampton North CC       | 49.3 | 50 |
| 224 | Makerfield BC                         | 49.3 | 49 |
| 225 | Westminster and Chelsea East BC       | 49.3 | 49 |
| 226 | Warrington North CC                   | 49.4 | 49 |
| 227 | Broxtowe CC                           | 49.4 | 49 |
| 228 | Crewe and Nantwich CC                 | 49.4 | 49 |
| 229 | Newport Pagnell CC                    | 49.4 | 50 |
| 230 | Leeds East CC                         | 49.4 | 49 |

| 231 | Sheffield Hallam CC         | 49.4 | 50 |
|-----|-----------------------------|------|----|
| 232 | Leigh South and Atherton BC | 49.4 | 49 |
| 233 | West Lancashire CC          | 49.4 | 50 |
| 234 | Rugby CC                    | 49.4 | 49 |
| 235 | Widnes and Halewood CC      | 49.4 | 50 |
| 236 | Ilkeston and Long Eaton CC  | 49.4 | 49 |
| 237 | South Derbyshire CC         | 49.4 | 49 |
| 238 | Redditch CC                 | 49.4 | 49 |
| 239 | Bury North BC               | 49.5 | 49 |
| 240 | Rawmarsh and Conisbrough CC | 49.5 | 50 |
| 241 | Mansfield CC (Median)       | 49.5 | 50 |
| 242 | Scunthorpe CC               | 49.5 | 50 |
| 243 | Spelthorne BC               | 49.6 | 49 |
| 244 | Newbury CC                  | 49.6 | 49 |
| 245 | Oxford West and Abingdon CC | 49.6 | 49 |
| 246 | Eastleigh BC                | 49.6 | 49 |
| 247 | West Pennine Moors CC       | 49.6 | 50 |
| 248 | Stourbridge BC              | 49.7 | 49 |
| 249 | Plymouth Moor View BC       | 49.7 | 50 |
| 250 | Three Rivers CC             | 49.7 | 49 |
| 251 | Normanton and Hemsworth CC  | 49.7 | 50 |
| 252 | Tynemouth BC                | 49.7 | 50 |
| 253 | St Helens South BC          | 49.7 | 50 |
| 254 | Ashfield CC                 | 49.7 | 50 |
| 255 | Halesowen BC                | 49.7 | 49 |
| 256 | Mid Bedfordshire CC         | 49.7 | 50 |
| 257 | Reigate CC                  | 49.7 | 49 |
| 258 | Tamworth CC                 | 49.8 | 50 |
| 259 | Liverpool Garston BC        | 49.8 | 50 |
| 260 | Ellesmere Port BC           | 49.8 | 50 |
| 261 | Maidenhead CC               | 49.8 | 49 |
| 262 | Tunbridge Wells CC          | 49.8 | 49 |
|     |                             |      |    |

| 263 | Bolton West CC               | 49.8 | 50 |
|-----|------------------------------|------|----|
| 264 | Wallasey BC                  | 49.9 | 50 |
| 265 | Hertsmere CC                 | 49.9 | 49 |
| 266 | Bicester CC                  | 49.9 | 49 |
| 267 | Doncaster North CC           | 49.9 | 50 |
| 268 | Newcastle upon Tyne North BC | 49.9 | 50 |
| 269 | Witney CC                    | 49.9 | 50 |
| 270 | Worsley and Eccles CC        | 49.9 | 50 |
| 271 | St Helens North CC           | 50.0 | 50 |
| 272 | Epsom and Ewell BC           | 50.0 | 49 |
| 273 | Darlington CC                | 50.0 | 50 |
| 275 | North West Leicestershire CC | 50.0 | 50 |
| 277 | Winchester CC                | 50.0 | 50 |
| 278 | Gedling CC                   | 50.1 | 50 |
| 279 | Huntingdon CC                | 50.1 | 50 |
| 280 | Hedge End CC                 | 50.1 | 50 |
| 281 | Bolsover CC                  | 50.1 | 50 |
| 282 | Mid Leicestershire CC        | 50.1 | 50 |
| 283 | Calder Valley CC             | 50.1 | 50 |
| 284 | Surrey Heath CC              | 50.1 | 50 |
| 285 | Braintree CC                 | 50.2 | 50 |
| 287 | Selby CC                     | 50.2 | 50 |
| 288 | Orpington CC                 | 50.2 | 50 |
| 289 | Rushcliffe CC                | 50.2 | 50 |
| 290 | North Bedfordshire CC        | 50.3 | 50 |

## References

- Altman, M. (1998a). *Districting principles and democratic representation*. PhD thesis, California Institute of Technology. No. 00038.
- Atlman, M. (1998b). Modelling the effect of mandatory district compactness on partisan gerrymanders. *Political Geography* 17(8): 989-1012.
- Ansolabehere, S. and Palmer, M. (2016). A Two Hundred-Year statistical history of the Gerrymander. *Ohio State Law Journal* 77: 741.
- Babbitt, D., Garland, P, and Johnson, O. Lived population density and the spread of COVID-19. *arXiv preprint arXiv*:2005.01167.
- Blackstone, W. (1765) Commentaries on the Laws of England
- Boyce, R. and Clark, W. (1964). The concept of shape in geography. *Geographical Review* 54(4): 561-572.
- Brinkhoff, T., Kreigel, H.-P, and Braun, A. (1995). Measuring the complexity of polygonal objects. In *ACM-GIS*: 109.
- Clauset, A., Newman, M.E.J., and Moore, C. (2004) Finding community structure in very large networks." *Physical review E* 70.6
- Csardi, G., and Nepusz, T.. (2006) The igraph software package for complex network research. *InterJournal*, complex systems 1695.5: 1-9.
- Day, J. "The process of internal migration in England and wales, 1851-1911: Updating Ravenstein and the Step Migration Hypothesis." *Comparative Population Studies* 44: 447-496.
- Foti, F., Waddell, P, and Luxen, D. (2012). A generalized computational framework for accessibility: From the pedestrian to the metropolitan scale. *Proceedings of the* 4<sup>th</sup> TRB Conference on Innovations in Travel Modeling. Transportation Research Board.
- Fouirnaies, A. (2021) How do campaign spending limits affect elections? Evidence from the United Kingdom 1885-2019. American Political Science Review 115(2): 395-411.
- Morril, R. (1987) Redistricting, region and representation. *Political Geography Quarterly* 6(3): 241-260.
- Nowosad, J., & Stepinski, T. F. (2019). Information theory as a consistent framework for quantification and classification of landscape patterns. *Landscape Ecology*, 34(9): 2091-2101.
- Pattie, C., Johnston, R., & Rossiter, D. (2012). Change the seats, change the participation? Parliamentary redistricting and constituency turnout. *Representation*, 48(4), 419-428.
- Polsby, D.D. and Popper, R. D. (1991). The third criterion: Compactness as a procedural safeguard against partisan gerrymandering. *Yale Law Policy Review 9*(2): 301-353.
- Rae, A. There's a better way to measure population density. *Citylab*. Available at https://www.citylab.com/life/2018/02/theres-a-better-way-to-measure-population-density/552815/
- Reock, E.C. (1961). A Note: Measuring the compactness as a requirement of legislative apportionment. *Midwest Journal of Political Science* 5(1):70.
- Tatem, A.J. (2017). WorldPop, open data for spatial demography. *Scientific Data* 4(1)
- Weaver, J. B. and Hess, S. W. (1963). A procedure for nonpartisan districting: Development of computer techniques. *The Yale Law Journal* 73(2): 288.
- Wolf, L. J. (2017) *Spatializing partisan gerrymandering forensics: Local measures and spatial specifications.* PhD Dissertation, Arizona State University.
- Yasumoto, M. (2011). The Rise of a Victorian Ironopolis: Middlesbrough and Regional Industrialization (Vol. 15). Boydell Press.